水体污染控制与治理

城市河道沉积物溶解性有机质特征及其对反硝化过程的影响研究

  • 翁蕊 ,
  • 韦政 ,
  • 杨燕梅 ,
  • 韩静 ,
  • 何岩 ,
  • 黄民生
展开
  • 1. 华东师范大学 生态与环境科学学院 上海市城市化生态过程与生态恢复重点实验室, 上海 200241
    2. 崇明生态研究院, 上海 202162
    3. 上海有机固废生物转化工程技术研究中心, 上海 200241
    4. 自然资源部大都市区国土空间生态修复工程技术创新中心, 上海 200062

收稿日期: 2020-11-16

  网络出版日期: 2021-07-23

基金资助

国家自然科学基金 (41877477); 国家重大科技项目 (2018ZX07208008, 2017ZX07207001); 上海市科技创新重点项目 (18DZ1203806)

Characteristics of dissolved organic matter and its effects on denitrification in urban river sediments

  • Rui WENG ,
  • Zheng WEI ,
  • Yanmei YANG ,
  • Jing HAN ,
  • Yan HE ,
  • Minsheng HUANG
Expand
  • 1. Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2. Institute of Eco-Chongming, Shanghai 202162, China
    3. Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China
    4. Technology Innovation Center for Land Spatial Eco-Restoration in Metropolitan Area (Ministry of Natural Resources), Shanghai 200062, China

Received date: 2020-11-16

  Online published: 2021-07-23

摘要

为了解决城市河道治理过程中氮营养盐去除难题, 城市河道体系中溶解性有机质 (DOM) 对反硝化过程的影响作用值得重视. 研究表明, 河道沉积物中DOM的腐殖化程度较低、芳香性弱, 以小分子的富里酸为主, 其浓度平均为 (1868.5 ± 63.2) mg/kg. 与空白组相比, DOM可以促进反硝化过程, 对TN和NO3-N去除率分别提升了7.24% ± 0.36%和23.52% ± 1.17%, 而DOM协同乙酸盐组对TN和NO3-N的去除效果更好, 分别可以达到74.48% ± 1.29%和98.62% ± 0.07%. 微生物分析表明, DOM组的菌群多样性和丰富度均高于空白组, 但其中的异养反硝化菌属PseudomonasBrevundimonas以及nirK型反硝化菌属Paracoccus的丰度均低于DOM协同乙酸盐组. 此外, DOM运行体系中NH4+-N浓度维持较高的水平 (大于3.7 mg/L), 而且含有DOM体系中与异化硝酸盐还原成铵 (DNRA) 功能相关的厌氧粘细菌 (Anaeromyxobacter), 其相对丰度明显增加, 推测DOM在促进反硝化的同时诱导了DNRA过程的发生.

本文引用格式

翁蕊 , 韦政 , 杨燕梅 , 韩静 , 何岩 , 黄民生 . 城市河道沉积物溶解性有机质特征及其对反硝化过程的影响研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(4) : 46 -54 . DOI: 10.3969/j.issn.1000-5641.2021.04.006

Abstract

Understanding the impact of dissolved organic matter (DOM) on the denitrification process is critical to addressing the challenges associated with nitrogen removal in urban river treatment. In this paper, we show that DOM in urban rivers are mainly comprised of small-molecule fulvic acids. The humic acid content and aromaticity of the DOM, moreover, were found to be low. Compared with the control case, DOM can promote the denitrification process; specifically, the removal efficiency of TN and NO3-N in the DOM-added group increased by 7.24% ± 0.36% and 23.52% ± 1.17%, respectively. DOM with an acetate group had an even better effect on the removal of TN and NO3-N, reaching 74.48% ± 1.29% and 98.62% ± 0.07%, respectively. Microbiological analysis showed that the DOM-added group can significantly increase the diversity and richness of the bacteria community compared with the control case. However, the relative abundance of the heterotrophic denitrifiers Pseudomonas and Brevundimonas as well as the nirK-type denitrifier Paracoccus in the DOM-added group was less than that of the DOM with an acetate group. Additionally, a relatively high concentration of NH4+-N (> 3.7 mg/L) was observed in the DOM-added group. The addition of DOM can significantly increase the relative abundance of Anaeromyxobacter related to dissimilatory nitrate reduction to ammonium (DNRA) functional genes. It is speculated that DOM promotes the denitrification process and induces the DNRA process simultaneously.

参考文献

1 何岩, 沈叔云, 黄民生, 等. 城市黑臭河道底泥内源氮硝化-反硝化作用研究. 生态环境学报, 2012, 21 (6): 1166- 1170.
2 王志霞, 葛小鹏, 晏晓敏, 等. 溶解性有机质对菲在沉积物上吸附与解吸性能的影响. 中国环境科学, 2012, 32 (1): 105- 112.
3 RIBOT M, COCHERO J, VAESSEN T N, et al. Leachates from helophyte leaf-litter enhance nitrogen removal from wastewater treatment plant effluents. Environmental Science & Technology, 2019, 53 (13): 7613- 7620.
4 HE Q C, FENG C P, CHEN N, et al. Characterizations of dissolved organic matter and bacterial community structures in rice washing drainage (RWD)-based synthetic groundwater denitrification. Chemosphere, 2019, 215, 142- 152.
5 BAHAM J, SPOSITO G. Chemistry of water-soluble, metal-complexing ligands extracted from an anaerobically digested sewage sludge. Journal of Environmental Quality, 1983, 12 (1): 96- 100.
6 国家环保局. 水和废水监测分析方法 [M]. 4版. 北京: 中国环境科学出版社, 2002.
7 XU N, TAN G, WANG H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. European Journal of Soil Biology, 2016, 74, 1- 8.
8 PRIEME A, BRAKER G, TIEDJE J. Diversity of nitrite reductase (nirK and nirS) gene fragments in forested upland and wetland soils . Applied and Environmental Microbiology, 2002, 68 (4): 1893- 1900.
9 ALLANA W, JOANNE C, SANFORD C, et al. Refined NrfA phylogeny improves PCR-based nrfA gene detection . Applied and Environmental Microbiology, 2014, 80 (7): 2110- 2119.
10 傅平青, 刘丛强, 尹祚莹, 等. 腐殖酸三维荧光光谱特性研究. 地球化学, 2004, 33 (3): 301- 308.
11 WU F C, TANOUE E. Isolation and partial characterization of dissolved copper-complexing ligands in streamwaters. Environmental Science & Technology, 2001, 35, 3646- 3652.
12 傅平青, 刘丛强, 吴丰昌. 溶解有机质的三维荧光光谱特征研究. 光谱学与光谱分析, 2005, 25 (12): 2024- 2028.
13 黄量, 于德泉. 紫外光谱在有机化学中的应用 [M]. 北京: 科学出版社, 2000: 211-230.
14 闫彩虹. 湖泊沉积物溶解性有机质与有机氮特征研究 [D]. 长沙: 湖南农业大学, 2011.
15 周石磊, 张艺冉, 黄廷林, 等. 周村水库主库区水体热分层形成过程中沉积物间隙水DOM的光谱演变特征. 环境科学, 2018, 39 (12): 5451- 5463.
16 ARTINGER R, BUCKAU G, GEYER S, et al. Characterization of groundwater humic substances: influence of sedimentary organic carbon. Applied Geochemistry, 2000, 15 (1): 97- 116.
17 BLEYEN N, HENDRIX K, MOORS H, et al. Biodegradability of dissolved organic matter in Boom Clay pore water under nitrate-reducing conditions: Effect of additional C and P sources. Applied Geochemistry, 2018, 92, 45- 58.
18 程琼, 庄婉娥, 杨丽阳. 水生系统中溶解态有机质的激发效应研究进展. 环境化学, 2018, 37 (1): 10- 18.
19 GAO L J, HAN F, ZHANG X W, et al. Simultaneous nitrate and dissolved organic matter removal from wastewater treatment plant effluent in a solid-phase denitrification biofilm reactor. Bioresource Technology, 2020, 314, 123714.
20 MIURA Y, WATANABE A Y, OKABE S. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environmental Science & Technology, 2007, 41 (22): 7787- 7794.
21 HUG L A, CASTELLE C J, WRIGHTON K C, et al. Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 2013, 1 (1): 22.
22 曹雁, 王桐屿, 秦玉洁, 等. 厌氧氨氧化反应器脱氮性能及细菌群落多样性分析. 环境科学, 2017, 38 (4): 1544- 1550.
23 李慧, 刘丹丹, 陈文清. 反硝化聚磷菌的筛选及脱氮除磷特性. 环境工程, 2016, 34 (4): 25- 28.
24 SHAO M, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Applied Microbiology and Biotechnology, 2010, 88 (5): 1027- 1042.
25 HAO R, LI S, LI J, et al. Denitrification of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community. Bioresource Technology, 2013, 143, 178- 186.
26 SHINODA Y, SAKAI Y, UENISHI H, et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp strain DNT-1. Applied and Environmental Microbiology, 2004, 70 (3): 1385- 1392.
27 常玉梅, 杨琦, 郝春博, 等. 城市污水厂活性污泥强化自养反硝化菌研究. 环境科学, 2011, 32 (4): 1210- 1216.
28 聂毅磊, 贾纬, 曾艳兵, 等. 两株好氧反硝化聚磷菌的筛选、鉴定及水质净化研究. 生物技术通报, 2017, 33 (3): 116- 121.
29 武晓桐, 姜欣, 盛思远, 等. 静态好氧高温牛粪堆肥中nirK型反硝化细菌群落动态变化. 微生物学通报, 2019, 46 (5): 986- 996.
30 姚源, 竺建荣, 唐敏, 等. 好氧颗粒污泥技术处理乡镇污水应用. 环境科学研究, 2018, 31 (2): 379- 388.
31 卜翠娜. 异化硝酸盐还原菌 (DNRA) 的环境分布及富集培养研究 [D]. 济南: 山东大学, 2018.
文章导航

/