计算机科学

基于最佳拼接路径的大视野显微图像研究

  • 许阳 ,
  • 刘洪英 ,
  • 庄泉洁
展开
  • 1. 华东师范大学 通信与电子工程学院, 上海  200241
    2. 上海澜澈生物科技有限公司, 上海  200240

收稿日期: 2020-08-31

  网络出版日期: 2021-11-26

基金资助

上海市闵行区科委2018年度产学研合作计划(2018MH306)

Research on large-field microscopic images based on the best stitching path

  • Yang XU ,
  • Hongying LIU ,
  • Quanjie ZHUANG
Expand
  • 1. School of Communication and Electronic Engineering, East China Normal University, Shanghai  200241, China
    2. Shanghai Lanche Biological Technology Co., Ltd., Shanghai  200240, China

Received date: 2020-08-31

  Online published: 2021-11-26

摘要

图像拼接技术是大视野显微数字图像应用中的关键技术之一. 随着科学技术的发展, 人们更加关心大视野显微数字图像的快速而又准确的图像拼接问题. 而现有的传统图像拼接方法是在图像配准之后按照固定的顺序拼接, 这对显微数字图像的采集质量以及配准的准确度要求很高, 一旦有误差便会沿着固定的路径累加, 从而使后续的图像产生错位等问题. 通过实验分析, 提出了一种优化大视野图像拼接路径的方法, 极大地优化了误差累积和配准失败带来的问题, 有效地提高了大视野显微数字图像的拼接质量. 该方法不仅可用于大视野显微图像的拼接, 也适用于其他类型的图像拼接.

本文引用格式

许阳 , 刘洪英 , 庄泉洁 . 基于最佳拼接路径的大视野显微图像研究[J]. 华东师范大学学报(自然科学版), 2021 , 2021(6) : 81 -87 . DOI: 10.3969/j.issn.1000-5641.2021.06.009

Abstract

Image stitching technology is one of the key technologies in the application of large-field microscopic digital images. The existing traditional image stitching method is to stitch in a fixed order after image registration, and once there is an error, it will be accumulated along a fixed path, thereby causing problems such as misalignment of subsequent images. In this study, through experimental analysis, a method for optimizing the stitching path of the large-field image was proposed, which greatly optimized the problems caused by error accumulation and registration failure, and effectively improved the stitching quality of the large-field microscopic digital image. This method can be used not only for the stitching of large-field microscopic images, but also for other types of stitching.

参考文献

1 王鸿. 图像拼接方法及其应用研究 [D]. 长沙: 中南大学, 2013.
2 叶志前, 吴昊. 基于特征点的病理切片图像拼接算法. 生物医学工程学杂志, 2010, 27 (5): 984- 986.
3 刘炳宪, 谢菊元, 王焱辉, 等. 一种图像拼接方法: CN108537730A [P]. 2018-09-14.
4 许阳, 刘洪英, 庄泉洁, 等. 一种大视野图像拼接路径的优化方法: CN110689511A [P]. 2020-01-14.
5 黄永祯. 病理切片数字显微成像光学系统的研究 [D]. 南京: 南京理工大学, 2014.
6 吴金杰. 一类照度不均匀图像的拼接技术研究 [D]. 杭州: 杭州电子科技大学, 2012.
7 RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: An efficient alternative to SIFT or SURF [C] // 2011 International Conference on Computer Vision. IEEE, 2011: 2564-2571. DOI: 10.1109/ICCV.2011.6126544.
8 张锐娟, 张建奇, 杨翠. 基于SURF的图像配准方法研究. 红外与激光工程, 2009, 38 (1): 160- 165.
9 LOWE D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60 (2): 91- 110.
10 肖健. SIFT特征匹配算法研究与改进 [D]. 重庆: 重庆大学, 2012.
11 LIU L, ZHAN Y Y, LUO Y, et al. Summarization of the scale invariant feature transform. Journal of Image and Graphics, 2013, 18 (8): 885- 892.
12 孙奇. 基于特征的图像配准方法的研究与实现 [D]. 沈阳: 沈阳航空航天大学, 2014.
13 柴政, 刘任任, 梁光明. 基于机械扫描与改进SURF的显微图像拼接算法. 计算机技术与发展, 2019, 29 (11): 97- 101.
14 BAY H, TUYTELAARS T, GOOL L. SURF: Speeded up robust features [C] // Proceedings of the 9th European Conference on Computer Vision. Berlin: Springer, 2006: 404-417. DOI: 10.1007/11744023_32.
15 谷宗运, 谭红春, 殷云霞, 等. 基于SURF和改进的RANSAC算法的医学图像配准. 中国医学影像学杂志, 2014, 22 (6): 470- 475.
16 FISCHLER M A, BOLLES R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24 (6): 381- 395.
17 马兴民. 图像配准若干关键技术研究及应用 [D]. 北京: 北京科技大学, 2019.
18 卢佳毅. 基于卷积神经网络的肺部CT图像配准方法 [D]. 武汉: 华中科技大学, 2019.
19 YI K M, VERDIE Y, FUA P, et al. Learning to assign orientations to feature points [C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 107-116. DOI: 10.1109/CVPR.2016.19.
20 CAO X H, YANG J H, GAO Y Z, et al. Region-adaptive deformable registration of CT/MRI pelvic images via learning-based image synthesis. IEEE Transactions on Image Processing, 2018, 27 (7): 3500- 3512.
文章导航

/