物理学与电子学

C3N带隙调控的第一性原理研究

  • 赵威 ,
  • 袁清红
展开
  • 华东师范大学 精密光谱科学与技术国家重点实验室, 上海 200241

收稿日期: 2021-04-23

  网络出版日期: 2022-07-19

基金资助

国家自然科学基金(21673075)

Bandgap tuning of C3N: A first-principles study

  • Wei ZHAO ,
  • Qinghong YUAN
Expand
  • State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Received date: 2021-04-23

  Online published: 2022-07-19

摘要

采用基于密度泛函理论 (Density Functional Theory, DFT) 的第一性原理计算, 研究了堆垛方式、层数及外加电场对C3N的带隙调控. 考察了AA-1型、 AA-2型、 AB-1型和AB-2型这4种堆垛结构, 计算表明, AB-2型堆垛结构能量最为有利. 通过HSE06杂化泛函对带隙进行了精确计算, 发现AA型堆垛与AB型堆垛的双层C3N存在较大的带隙差异, AA型堆垛结构的带隙要明显小于AB型堆垛结构. 此外, 还发现C3N的带隙可由单层的1.21 eV调控到体相的0.69 eV; 通过施加外加垂直电场, 可以将具有AB-2型堆垛结构的双层、三层和四层C3N半导体调控为趋于零带隙的金属.

本文引用格式

赵威 , 袁清红 . C3N带隙调控的第一性原理研究[J]. 华东师范大学学报(自然科学版), 2022 , 2022(4) : 114 -119 . DOI: 10.3969/j.issn.1000-5641.2022.04.011

Abstract

In this paper, bandgap tuning of C3N through the stacking pattern, layer number, and external electric field were investigated by employing first-principles density functional theory (DFT) calculations. Four stacking structures—namely AA-1, AA-2, AB-1, and AB-2—were investigated in our study; the calculation results showed that the AB-2 structure was the most energetically favorable. Accurate calculations of the bandgap by the HSE06 hybrid functional revealed a large bandgap difference between the C3N bilayers with AA and AB stacking; specifically, structures with AA stacking had much smaller bandgap than those with AB stacking. Moreover, we found that the bandgap of C3N decreases from 1.21 eV for a single layer to 0.69 eV for the AB-2 bulk structure. By applying a vertical electric field, the bandgap of a C3N bilayer, tri-layer, and four-layer with AB-2 stacking can be tuned to a nearly metallic state.

参考文献

1 NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306 (5696): 666- 669.
2 GEIM A K, NOVOSELOV K S. The rise of graphene. Nature Materials, 2007, 6 (3): 183- 191.
3 KIM K, CHOI J Y, KIM T, et al. A role for graphene in silicon-based semiconductor devices. Nature, 2011, 479 (7373): 338- 344.
4 SCHWIERZ F. Graphene transistors. Nature Nanotechnology, 2010, 5 (7): 487- 496.
5 MERIC I, HAN M Y, YOUNG A F, et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotechnology, 2008, 3 (11): 654- 659.
6 WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8 (1): 76- 80.
7 MAHMOOD J, LEE E K, JUNG M, et al. Nitrogenated holey two-dimensional structures. Nature Communications, 2015, (6): 6486.
8 YANG S W, LI W, YE C C, et al. C3N—A 2D crystalline, hole-free, tunable-narrow-bandgap semiconductor with ferromagnetic properties . Advanced Materials, 2017, 29 (16): 1605625.
9 KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996, 54 (16): 11169- 11186.
10 PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77 (18): 3865- 3868.
11 HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential. Journal of Chemical Physics, 2003, 118 (18): 8207- 8215.
12 BL?CHL P E. Projector augmented-wave method. Physical Review B, 1994, 50 (24): 17953- 17979.
13 MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13 (12): 5188- 5192.
14 HU Q K, WU Q H, WANG H Y, et al. First-principles studies of structural and electronic properties of layered C3N phases . Physica Status Solidi B, 2012, 249 (4): 784- 788.
15 ZHOU X D, FENG W X, GUAN S, et al. Computational characterization of monolayer C3N: A two-dimensional nitrogen-graphene crystal . Journal of Materials Research, 2017, 32 (15): 2993- 3001.
16 WATANABE K, TANIGUCHI T, KANDA H. Ultraviolet luminescence spectra of boron nitride single crystals grown under high pressure and high temperature. Physica Status Solidi A, 2004, 201 (11): 2561- 2565.
17 ELLIS J K, LUCERO M J, SCUSERIA G E. The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory . Applied Physics Letters, 2011, 99 (26): 268901.
18 FERRARI A C, MEYER J C, SCARDACI V, et al. Raman spectrum of graphene and graphene layers. Physical Review Letters, 2006, 97 (18): 187401.
19 MORTAZAVI B. Ultra high stiffness and thermal conductivity of graphene like C3N . Carbon, 2017, 118, 25- 34.
20 BALOG R, J?RGENSEN B, NILSSON L, et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nature Materials, 2010, 9 (4): 315- 319.
文章导航

/