化学化工

I-TiO2/Sr2MgSi2O7:Eu,Dy复合光催化剂的制备及性能研究

  • 陈加祥 ,
  • 张哲娟 ,
  • 聂耳 ,
  • 宋也男 ,
  • 朴贤卿 ,
  • 孙卓
展开
  • 华东师范大学 物理与电子科学学院 纳光电集成与先进装备教育部工程研究中心, 上海 200241

收稿日期: 2021-04-20

  录用日期: 2021-04-21

  网络出版日期: 2022-11-22

基金资助

上海市科委项目 (19DZ1205102, 20DZ1202106)

Preparation and photocatalysis properties of I-TiO2/Sr2MgSi2O7:Eu,Dy composite photocatalyst

  • Jiaxiang CHEN ,
  • Zhejuan ZHANG ,
  • Er NIE ,
  • Yenan SONG ,
  • Xianqing PIAO ,
  • Zhuo SUN
Expand
  • Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China

Received date: 2021-04-20

  Accepted date: 2021-04-21

  Online published: 2022-11-22

摘要

为了实现在无光或弱光环境下对有机污染物的降解, 采用水解法制备了I-TiO2/Sr2MgSi2O7:Eu,Dy复合光催化剂, 并以罗丹明B (Rhodamine B, RhB) 为目标污染物, 进行了光催化降解实验. 结果表明, 当I-TiO2/Sr2MgSi2O7:Eu,Dy复合光催化剂中I-TiO2的质量百分比为30%时, 降解率最高: 在可见光照射下, 3 h内对RhB污染物的降解率达到19.2%; 其在无光源环境下, 6 h内对RhB污染物的降解率达到31.9%. 实验证明, 以Sr2MgSi2O7:Eu,Dy长余辉荧光粉为载体的新型复合光催化剂, 在光照下吸收的光能, 成为无光或弱光环境下的新发光源, 实现可见光复合光催化剂的无光催化, 最终达到全天候24 h催化净化的应用目标.

本文引用格式

陈加祥 , 张哲娟 , 聂耳 , 宋也男 , 朴贤卿 , 孙卓 . I-TiO2/Sr2MgSi2O7:Eu,Dy复合光催化剂的制备及性能研究[J]. 华东师范大学学报(自然科学版), 2022 , 2022(6) : 157 -168 . DOI: 10.3969/j.issn.1000-5641.2022.06.016

Abstract

A I-TiO2/Sr2MgSi2O7:Eu,Dy composite photocatalyst was prepared via hydrolysis for efficient degradation of organic pollutants in the absence of light. In this paper, the photocatalytic degradation of Rhodamine B (RhB) by the composite photocatalyst was studied. The results show that the degradation ability of I-TiO2/Sr2MgSi2O7:Eu,Dy composite photocatalyst with a I-TiO2 ratio of 30% is better, and the degradation efficiency of RhB pollutants reached 31.9% in 6 h without a light source. These results indicate that a Sr2MgSi2O7:Eu,Dy composite photocatalyst, supported by long afterglow phosphor, can absorb light energy and become a new light source in light-free or low-light environments for the photocatalytic reaction of I-TiO2 in order to achieve 24-hour catalytic purification.

参考文献

1 MO J H, ZHANG Y P, XU Q J, et al. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environment, 2009, 43, 2229- 2246.
2 NAKATA K, FUJISHIMA A. TiO2 photocatalysis: Design and applications . Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 169- 189.
3 TSENG T K, LIN Y S, CHEN Y J, et al. A Review of photocatalysts prepared by sol-gel method for VOCs removal [J]. International Journal of Molecular Sciences, 2010(11): 2336-2361.
4 FUJISHIMA A, ZHANG X T, TRYK, D A. TiO2photocatalysis and related surface phenomena . Surface Science Reports, 2008, 63, 515- 582.
5 TOJO S, TACHIKAWA T, FUJITSUKA M, et al. Iodine-doped TiO2 photocatalysts: correlation between band structure and mechanism . The Journal of Physical Chemistry C, 2008, 112 (38): 14948- 14954.
6 LIU D, WANG J Q, ZHOU J, et al. Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study . Chemical Engineering Journal, 2019, 369, 968- 978.
7 HONG X T, WANG Z P, CAI W M, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide [J]. Chemistry of Materials, 2005, 17: 1548-1552.
8 SU W Y, ZHANG Y F, FU X Z, et al. Multivalency iodine doped TiO2: Preparation, characterization, theoretical studies, and visible-light photocatalysis . Langmuir, 2008, 24, 3422- 3428.
9 LIU G, SUN C H, YAN X X, et al. Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms . Chemistry of Materials, 2009, 19, 2822- 2829.
10 USSEGLIO S, DAMIN A, SCARANO D, et al. (I-2) (n) encapsulation inside TiO2: A way to tune photoactivity in the visible region . Chemical Society Reviews, 2007, 129, 2822- 2828.
11 WANG W A, SHI Q, WANG Y P, et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method . Applied Surface Science, 2011, 257, 3688- 3696.
12 PAN W, NING G L, ZHANG X, et al. Enhanced luminescent properties of long-persistent Sr2MgSi2O7:Eu2+, Dy3+ phosphor prepared by the co-precipitation method . Luminescence, 2008, 128 (12): 1975.
13 LIU B, SHI C S, YIN M, et al. The trap states in the Sr2MgSi2O7 and (Sr, Ca)MgSi2O7 long afterglow phosphor activated by Eu2+and Dy3+. Journal of Alloys Compounds, 2005, 387 (1/2): 65.
14 LI H H, YIN S, SATO T, et al. Novel luminescent photocatalytic deNOx activity of CaAl2O4: (Eu, Nd)/TiO2?xNy Composite . Applied Catalysis B: Environmental, 2011, 106, 586- 591.
15 LI H H, YIN S, WANG Y H, et al. Effect of phase structures of TiO2-xNy on the photocatalytic activity of CaAl2O4: (Eu, Nd)-coupled TiO2-xNy . Journal of Catalysis, 2012, 286, 273- 278.
16 LI H H, YIN S, WANG Y H, et al. Persistent fluorescence-assisted TiO2-xNx-based photocatalyst for gaseous acetaldehyde degradation . Environmental Science and Technology, 2012, 46, 7741- 7745.
17 LI H H, YIN S, WANG Y H, et al. Persistent luminescence assisted photocatalytic properties of CaAl2O4: (Eu, Nd)/TiO2?xNx and Sr4Al14O25: (Eu, Dy)/TiO2?xNx [J]. Journal of Molecular Catalysis A: Chemical, 2012, 363/364: 129-133.
18 LI H H, YIN S, SATO T. Persistent photocatalysis of continuously flowing gas-phase nitric oxide using CaAl2O4: (Eu, Nd)/rutile phase TiO2-xNy composites . Research on Chemical Intermediates, 2013, 39, 1501- 1507.
19 ZHONG J B, MA D, HE X Y, et al. Sol-gel preparation and photocatalytic performance of TiO2/SrAl2O4: Eu2+, Dy3+ toward the oxidation of gaseous benzene . Journal of Sol-Gel Science and Technology, 2009, 52, 140- 145.
20 XIAO Y H, LUO B, CHENG B C, et al. Enhanced visible light catalysis activity of CdS-sheathed SrAl2O4: Eu2+, Dy3+ nanocomposites . Dalton Transactions, 2018, 47, 7941- 7948.
21 VAIANO V, SACCO O, SANNINO D. Electric energy saving in photocatalytic removal of crystal violet dye through the simultaneous use of long-persistent blue phosphors, nitrogen-doped TiO2 and UV-light emitting diodes . Journal of Cleaner Production, 2019, 210, 1015- 1021.
22 VAIANO V, SACCO O, IERVOLINO G, et al. Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2 [J]. Applied Catalysis B: Environmental, 2015, 176/177: 594–600.
23 VAIANO V, SACCO O, SANNINO D, et al. Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. Journal of Cleaner Production, 2015, 100, 208- 211.
24 LIU D, ZHOU J, WANG J Q, et al. Enhanced visible light photoelectrocatalytic degradation of organic contaminants by F and Sn co-doped TiO2 photoelectrode . Chemical Engineering Journal, 2018, 344, 332- 341.
25 FERNANDEZ R L, DURAN A, PASCUAL M J, et al. Silicate-based persistent phosphors. Open Ceramics, 2021, (7): 100150.
26 LI J, XU X, LIU X, et al. Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis . Journal of Alloys & Compounds, 2016, 679, 454- 462.
27 QIU M, TIAN Y, CHEN Z, et al. Synthesis of Ti3+ self-doped TiO2 nanocrystals based on le chatelier's principle and their application in solar light photocatalysis . RSC Advances, 2016, (78): 74376- 74383.
28 WANG W A, SHI Q, WANG Y P, et al. Preparation and characterization of iodine-doped mesoporous TiO2 by hydrothermal method . Applied Surface Science, 2011, 257 (8): 3688- 3696.
29 HO-KMURA S, MONIZ S J A, HANDOKO A D, et al. Enhanced photoelectrochemical water splitting by nanostructured BiVO4-TiO2 composite electrodes . Journal of Materials Chemistry A, 2014, 2 (11): 3948- 3953.
30 CHEN Y C, HUNG T F, HU C W, et al. Rutile-type (Ti, Sn) O2 nanorods as efficient anode materials toward its lithium storage capabilities . Nanoscale, 2013, 5 (6): 2254- 2258.
31 XUE H L, ZHU Y N, PANG Z Y, et al. Research on a persistent red tone fluorescent polyacrylonitrile fiber with coaxial structure based on Sr2MgSi2O7: Eu2+, Dy3+ and Y2O2S: Eu3+, Mg2+, Ti4+. Journal of Luminescence, 2021, 235, 118047.
32 TSHABALALA M A, SWART H C, DEJENE F B, et al. Structure, surface analysis, photoluminescent properties and decay characteristics of Tb3+-Eu3+ co-activated Sr2MgSi2O7 phosphor . Applied Surface Science, 2016, 360, 409- 418.
33 NSIMAMA P D, NTWAEABORWA O M, SWART H C. Auger electron/X-ray photoelectron and cathodoluminescent spectroscopic studies of pulsed laser ablated SrAl2O4: Eu2+, Dy3+ thin films . Applied Surface Science, 2010, 257, 512- 517.
34 SHAAT S K K, SWART H C, NTWAEABORWA O M. Tunable and white photoluminescence from Tb3+–Eu3+ activated Ca0.3Sr0.7Al2O4 phosphors and analysis of chemical states by X-ray photoelectron spectroscopy . Journal of Alloys and Compounds, 2014, 587, 600- 605.
35 ZHOU Q, PENG F P, NI Y R, et al. Long afterglow phosphor driven round-the-clock g-C3N4 photocatalyst . Photochemistry Photobiology A, 2016, 328, 182- 188.
36 YIN H B, CHEN X F, HOU R J, et al. Ag/BiOBr film in a rotating-disk reactor containing long-afterglow phosphor for round-the-clock photocatalysis. ACS Applied Materials and Interfaces, 2015, 7 (36): 20076- 20082.
37 LU Y, ZHANG X, CHU Y C, et al. Cu2O nanocrystals/TiO2 microspheres film on a rotating disk containing long-afterglow phosphor for enhanced round-the-clock photocatalysis . Applied Catalysis B: Environmental, 2018, 224, 239- 248.
38 杨朋举, 王剑, 赵江红, 等. 罗丹明B敏化TiO2可见光分解水产氢研究 . 燃料化学学报, 2013, 41 (6): 735- 740.
39 谢耀, 邹云玲, 张高尚, 等. 单一相板钛矿TiO2的制备及光催化性能研究 . 纳米技术, 2019, 9 (1): 10- 16.
40 陈中颖, 余刚, 蒋展鹏. 热处理温度对TiO2结构性质及光催化活性的影响 . 上海环境科学, 2001, 20 (3): 120- 123.
41 SONG S, HONG F Y, HE Z Q, et al. Influence of zirconium doping on the activities of zirconium and iodine co-doped titanium dioxide in the decolorization of methyl orange under visible light irradiation. Applied Surface Science, 2011, 257, 10101- 10108.
42 HELLER A. Suppression and enhancement of the photoactivity of titanium dioxide(rutile) pigment. Journal of Physical Chemistry, 1987, 9l, 5987- 5991.
43 黄剑锋, 刘军民. 不同晶型TiO2的可控合成与光催化性能研究 . 当代化工研究, 2021, (20): 1- 3.
44 QIU J, KAWASAKI M, TANAKA K, et al. Phenomenon and mechanism of long-lasting phosphorescence in Eu2+-doped aluminosilicate glasses . Journal of Physics and Chemistry of Solids, 1998, 59 (9): 1521- 1525.
45 AITASALO T, HOLSA J, JUNGNER H, et al. Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates . Journal of Luminescence, 1998, 76/77, 424- 428.
46 HOLSA J, JUNGNER H, LASTUSAARI M, et al. Persistent luminescence of Eu2+ Doped alkaline earth aluminates, MAl2O4: Eu2+. Journal of Alloys and Compounds, 2001, 323, 326- 330.
47 YARATOTO H, MATSUZAWA T. Mechanism of long phosphorescence SrAl2O4: Eu2+, Dy3+ and CaA12O4: Eu2+, Nd3+. Journal of Luminescence, 1997, 72/73/74, 287- 289.
文章导航

/