绿色功能材料

糖基绿色功能材料自组装及性能研究

  • 豆伟涛 ,
  • 徐林 ,
  • 杨海波
展开
  • 华东师范大学 化学与分子工程学院 上海市绿色化学与化工过程绿色化重点实验室, 上海 200062
豆伟涛, 男, 博士, 副研究员, 研究方向为超分子化学生物学. E-mail: douweitao123@163.com

收稿日期: 2022-07-04

  录用日期: 2022-09-23

  网络出版日期: 2023-01-07

基金资助

国家自然科学基金 (21922506, 92056203)

Recent progress in the construction and application of self-assembled glycomaterials

  • Weitao DOU ,
  • Lin XU ,
  • Haibo YANG
Expand
  • Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China

Received date: 2022-07-04

  Accepted date: 2022-09-23

  Online published: 2023-01-07

摘要

糖作为生命体内重要的信号分子, 与受体间的特异性识别往往介导着重要的生理和病理学过程, 因此, 构筑功能性糖基靶向材料成为解密和调控糖生物学功能的重要途径. 由于其组装简单、结构可控的优势, 糖基功能性材料可通过非共价作用的超分子自组装策略简易获得. 本文系统总结了通过主客体相互作用和配位键导向自组装这两种超分子自组装策略构筑糖基组装材料的方法与应用. 最后, 强调了潜在挑战和未来方向, 希望推动糖基纳米材料的发展及更深入地了解碳水化合物相关的生理和病理过程.

本文引用格式

豆伟涛 , 徐林 , 杨海波 . 糖基绿色功能材料自组装及性能研究[J]. 华东师范大学学报(自然科学版), 2023 , 2023(1) : 50 -59 . DOI: 10.3969/j.issn.1000-5641.2023.01.006

Abstract

As essential signaling molecules in biological systems, carbohydrates are involved in several vital physiological and pathological processes via specific recognition by receptors. Hence, nanomaterials comprising carbohydrates are crucial for deciphering and regulating biological processes. A non-covalent assembly process can conveniently yield carbohydrate-based nanomaterials owing to the unique merits of simplicity and controllability of the process. This review summarizes the construction and application of glyco-based functional materials through host-guest interactions and coordination-driven self-assembly processes. Additionally, their potential challenges and future directions are highlighted with the aim of improving understanding on carbohydrate-related physiological and pathological processes.

参考文献

1 BAI Y, LUO Q, LIU J. Protein self-assembly: Via supramolecular strategies. Chemical Society Reviews, 2016, 45 (10): 2756- 2767.
2 LAMPEL A. Biology-inspired supramolecular peptide systems. Chem, 2020, 6 (6): 1222- 1236.
3 CHATTERJEE A, REJA A, PAL S, et al. Systems chemistry of peptide-assemblies for biochemical transformations. Chemical Society Reviews, 2022, 51 (8): 3047- 3070.
4 WANG Y, LOVRAK M, LIU Q, et al. Hierarchically compartmentalized supramolecular gels through multilevel self-sorting. Journal of the American Chemical Society, 2019, 141 (7): 2847- 2851.
5 VOORHAAR L, HOOGENBOOM R. Supramolecular polymer networks: Hydrogels and bulk materials. Chemical Society Reviews, 2016, 45 (15): 4013- 4031.
6 PRAMANIK P, RAY D, ASWAL V K, et al. Supramolecularly engineered amphiphilic macromolecules: Molecular interaction overrules packing parameters. Angewandte Chemie-International Edition, 2017, 56 (13): 3516- 3520.
7 THOTA B N S, URNER L H, HAAG R. Supramolecular architectures of dendritic amphiphiles in water. Chemical Reviews, 2016, 116 (4): 2079- 2102.
8 MARTíNEZ á, ORTIZ MELLET C, GARCíA FERNáNDEZ J M. Cyclodextrin-based multivalent glycodisplays: Covalent and supramolecular conjugates to assess carbohydrate–protein interactions. Chemical Society Reviews, 2013, 42 (11): 4746- 4773.
9 GAO R H, HUANG Y, CHEN K, et al. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications . Coordination Chemistry Reviews, 2021, 437, 213741.
10 LIU J, SHENG J, SHAO L, et al. Tetraphenylethylene-featured fluorescent supramolecular nanoparticles for intracellular trafficking of protein delivery and neuroprotection. Angewandte Chemie-International Edition, 2021, 60 (51): 26740- 26746.
11 SMITH B A H, BERTOZZI C R. The clinical impact of glycobiology: Targeting selectins, siglecs and mammalian glycans. Nature Reviews Drug Discovery, 2021, 20 (3): 217- 243.
12 PINHO S S, REIS C A. Glycosylation in cancer: Mechanisms and clinical implications. Nature Reviews Cancer, 2015, 15 (9): 540- 555.
13 SUN X, JAMES T D. Glucose sensing in supramolecular chemistry. Chemical Reviews, 2015, 115 (15): 8001- 8037.
14 MIURA Y, HOSHINO Y, SETO H. Glycopolymer nanobiotechnology. Chemical Reviews, 2016, 116 (4): 1673- 1692.
15 NAISMITH J H, FIELD R A. Structural basis of trimannoside recognition by concanavalin A. Journal of Biological Chemistry, 1996, 271 (2): 972- 976.
16 AHN G, BANIK S M, MILLER C L, et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nature Chemical Biology, 2021, 17 (9): 937- 946.
17 DAVIS A P. Biomimetic carbohydrate recognition. Chemical Society Reviews, 2020, 49 (9): 2531- 2545.
18 SU L, FENG Y, WEI K, et al. Carbohydrate-based macromolecular biomaterials. Chemical Reviews, 2021, 121 (18): 10950- 11029.
19 HE X P, TIAN H. Photoluminescence architectures for disease diagnosis: From graphene to thin-layer transition metal dichalcogenides and oxides. Small, 2016, 12 (2): 144- 160.
20 GUO Y, NEHLMEIER I, POOLE E, et al. Dissecting multivalent lectin–carbohydrate recognition using polyvalent multifunctional glycan-quantum dots. Journal of the American Chemical Society, 2017, 139 (34): 11833- 11844.
21 GONZáLEZ-CUESTA M, ORTIZ MELLET C, GARCíA FERNáNDEZ J M. Carbohydrate supramolecular chemistry: Beyond the multivalent effect. Chemical Communications, 2020, 56 (39): 5207- 5222.
22 PERCEC V, LEOWANAWAT P, SUN H J, et al. Modular synthesis of amphiphilic Janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. Journal of the American Chemical Society, 2013, 135 (24): 9055- 9077.
23 FOSTER J C, VARLAS S, COUTURAUD B, et al. Getting into shape: Reflections on a new generation of cylindrical nanostructures’ self-assembly using polymer building blocks. Journal of the American Chemical Society, 2019, 141 (7): 2742- 2753.
24 DELBIANCO M, BHARATE P, VARELA-ARAMBURU S, et al. Carbohydrates in supramolecular chemistry. Chemical Reviews, 2016, 116 (4): 1693- 1752.
25 GAO C, CHEN G. Exploring and controlling the polymorphism in supramolecular assemblies of carbohydrates and proteins. Accounts of Chemical Research, 2020, 53 (4): 740- 751.
26 COOK T R, ZHENG Y R, STANG P J. Metal-organic frameworks and self-assembled supramolecular coordination complexes: Comparing and contrasting the design, synthesis, and functionality of metal-organic materials. Chemical Reviews, 2013, 113 (1): 734- 777.
27 CHAKRABARTY R, MUKHERJEE P S, STANG P J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chemical Reviews, 2011, 111 (11): 6810- 6918.
28 DENG C L, MURKLI S L, ISAACS L D. Supramolecular hosts as: In vivo sequestration agents for pharmaceuticals and toxins. Chemical Society Reviews, 2020, 49 (21): 7516- 7532.
29 SCHMIDT B V K J, BARNER-KOWOLLIK C. Dynamic macromolecular material design-The versatility of cyclodextrin-based host–guest chemistry. Angewandte Chemie-International Edition, 2017, 56 (29): 8350- 8369.
30 THOMAS B, YAN K C, HU X L, et al. Fluorescent glycoconjugates and their applications. Chemical Society Reviews, 2020, 49 (2): 593- 641.
31 JIAO J B, WANG G Z, HU X L, et al. Cyclodextrin-based peptide self-assemblies (spds) that enhance peptide-based fluorescence imaging and antimicrobial efficacy. Journal of the American Chemical Society, 2020, 142 (4): 1925- 1932.
32 HU X L, ZANG Y, LI J, et al. Targeted multimodal theranostics: Via biorecognition controlled aggregation of metallic nanoparticle composites. Chemical Science, 2016, 7 (7): 4004- 4008.
33 WANG H, LIU Y, XU C, et al. Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54 (32): 4037- 4040.
34 SHULOV I, RODIK R V, ARNTZ Y, et al. Protein-sized bright fluorogenic nanoparticles based on cross-linked calixarene micelles with cyanine corona. Angewandte Chemie-International Edition, 2016, 55 (51): 15884- 15888.
35 LOU X, YANG Y. Pillar[n]arene-based supramolecular switches in solution and on surfaces . Advanced Materials, 2020, 32 (43): 2003263.
36 SONG N, KAKUTA T, YAMAGISHI T A, et al. Molecular-scale porous materials based on pillar[n]arenes . Chem, 2018, 4 (9): 2029- 2053.
37 FENG W, JIN M, YANG K, et al. Supramolecular delivery systems based on pillararenes. Chemical Communications, 2018, 54 (97): 13626- 13640.
38 YU G, MA Y, HAN C, YAO Y, et al. A sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. Journal of the American Chemical Society, 2013, 135 (28): 10310- 10313.
39 LIU X, SHAO W, ZHENG Y, et al. GSH-Responsive supramolecular nanoparticles constructed by β-D-galactose-modified pillar[5]arene and camptothecin prodrug for targeted anticancer drug delivery. Chemical Communications, 2017, 53 (61): 8596- 8599.
40 LI Q L, SUN Y, REN L, et al. Supramolecular nanosystem based on pillararene-capped cus nanoparticles for targeted chemo-photothermal therapy. ACS Applied Materials and Interfaces, 2018, 10 (35): 29314- 29324.
41 SREEDEVI P, NAIR J B, JOSEPH M M, et al. Dynamic self-assembly of mannosylated-calix[4]arene into micelles for the delivery of hydrophobic drugs. Journal of Controlled Release, 2021, 339, 284- 296.
42 BEATTY M A, HOF F. Host-guest binding in water, salty water, and biofluids: General lessons for synthetic, bio-targeted molecular recognition. Chemical Society Reviews, 2021, 50 (8): 4812- 4832.
43 KIM E, KIM D, JUNG H, et al. Facile, template-free synthesis of stimuli-responsive polymer nanocapsules for targeted drug delivery. Angewandte Chemie-International Edition, 2010, 49 (26): 4405- 4408.
44 GOMES L C, BENEDETTO G D, SCORRANO L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability [J]. Nature Cell Biology, 2011, 13(5): 589-598.
45 SUN C, WANG Z, YUE L, et al. Supramolecular induction of mitochondrial aggregation and fusion. Journal of the American Chemical Society, 2020, 142 (39): 16523- 16527.
46 ZHENG W, YANG G, SHAO N, et al. CO2 stimuli-responsive, injectable block copolymer hydrogels cross-linked by discrete organoplatinum(Ⅱ) metallacycles via stepwise post-assembly polymerization . Journal of the American Chemical Society, 2017, 139 (39): 13811- 13820.
47 DATTA S, SAHA M L, STANG P J. Hierarchical assemblies of supramolecular coordination complexes. Accounts of Chemical Research, 2018, 51 (9): 2047- 2063.
48 ZHU Y, ZHENG W, WANG W, et al. When polymerization meets coordination-driven self-assembly: Metallo-supramolecular polymers based on supramolecular coordination complexes. Chemical Society Reviews, 2021, 50 (13): 7395- 7417.
49 WANG W, WANG Y X, YANG H B. Supramolecular transformations within discrete coordination-driven supramolecular architectures. Chemical Society Reviews, 2016, 45 (9): 2656- 2693.
50 ZHOU F, LI S, COOK T R, et al. Saccharide-functionalized organoplatinum(Ⅱ) metallacycles. Organometallics, 2014, 33 (24): 7019- 7022.
51 DATTA S, SAHA M L, LAHIRI N, et al. Hierarchical self-assembly of a water-soluble organoplatinum(Ⅱ) metallacycle into well-defined nanostructures. Organic Letters, 2018, 20 (22): 7020- 7023.
52 YANG G, ZHENG W, TAO G, et al. Diversiform and transformable glyco-nanostructures constructed from amphiphilic supramolecular metallocarbohydrates through hierarchical self-assembly: The balance between metallacycles and saccharides. ACS Nano, 2019, 13 (11): 13474- 13485.
53 JIANG H, ZHANG X, CHEN X, et al. Protein lipidation: Occurrence, mechanisms, biological functions, and enabling technologies. Chemical Reviews, 2018, 118 (3): 919- 988.
54 FLORES J, WHITE B M, BREA R J, et al. Lipids: Chemical tools for their synthesis, modification, and analysis. Chemical Society Reviews, 2020, 49 (14): 4602- 4614.
55 YANG L, WANG X, ZHOU C, et al. Some thoughts about controllable assembly (Ⅱ): Catassembly in living organism. Scientia Sinica Chimica, 2020, 50 (12): 1781- 1800.
文章导航

/