收稿日期: 2022-01-27
录用日期: 2022-04-30
网络出版日期: 2023-05-25
基金资助
国家自然科学基金(41876093); 上海市科委项目(21DZ1201803, 21DZ1201700); 上海市自然科学基金(22ZR1421500); 华东师范大学“生态 + ”项目
Effects of coastal engineering and biological invasion on changes in the coastal pattern of Nanhui Dongtan, Shanghai
Received date: 2022-01-27
Accepted date: 2022-04-30
Online published: 2023-05-25
受人类活动与自然因素的双重影响, 海岸带的格局易发生快速演变, 从而直接或间接地影响海岸带生态系统的结构、功能和可持续发展. 本研究以上海市南汇东滩的海岸带为典型研究区, 通过遥感解译、海图数字化、野外现场调查等方法获取海岸带格局的时空分布数据, 分析了近20年 (2000—2020年) 海岸带空间格局变化及其演变规律, 并重点分析了海岸工程 (圈围工程和促淤工程) 和外来物种互花米草 (Spartina alterniflora) 入侵两个主要影响因素对海岸带格局的影响. 结果表明: ① 自2000年以来, 受海岸人类活动的影响, 南汇东滩海岸带的土地利用类型逐渐增加, 从以近海与海岸湿地为主的简单格局逐渐转变为近海与海岸湿地、内陆湿地、人工湿地、农田和建设用地等多种土地利用类型共存的复杂格局.② 2000—2005年的海岸圈围工程导致南汇东滩海岸带近海海岸湿地面积减少11894.7 hm2, 被圈围的近海海岸湿地转变为水稻田、库塘、农田等土地利用类型; 圈围初期淤泥质海滩 (0 m以上) 和潮间盐水沼泽出现淤涨和发育 (淤涨速率分别为320.5 hm2/a和110.9 hm2/a), 但随后 (至2015年) 淤涨速率缓慢下降至286.8 hm2/a和15.7 hm2/a; 圈围工程实施后, 经过10年 (2005—2015年) 的自然恢复, 近海与海岸湿地的面积也未达到圈围前2000年的水平. ③ 南汇东滩实施了海岸硬质促淤工程和生物促淤工程两种促淤工程, 均显著促进了近海与海岸湿地的快速发育, 但硬质促淤工程对于格局演变的影响更显著, 工程后淤泥质海滩 (0 m以上) 和潮间盐水沼泽向海推进速率分别为516.9 hm2/a和915.7 hm2/a, 分别是非促淤区自然淤涨速率的5.4倍和13.9倍. 引种互花米草的生物促淤工程, 仅在海堤至促淤堤内的有限范围内促进了互花米草的快速扩散和格局演变. ④ 外来物种互花米草在2020年已成为南汇东滩盐沼植被第一大优势植物, 占盐沼植被总面积的56%, 并显著改变了近海与海岸湿地的生态结构和功能. 由此可见, 海岸工程和生物入侵对海岸带格局演变产生了明显的动态影响. 尽管海岸带生态系统对海岸人类活动表现出一定的恢复力, 但湿地类型、面积和功能的变化是未来花很大代价都很难或无法恢复的. 如何整合海岸带近海与海岸湿地和内陆湿地的生态功能, 通过实施海岸带保护修复、生态补偿等措施实现海岸带可持续健康发展, 是未来陆海统筹需要解决的重要问题.
张婷玉 , 袁琳 , 张超 , 李阳 , 赵志远 , 史宇骁 , 张利权 , 顾靖华 . 海岸工程及生物入侵对上海南汇东滩海岸带格局演变的影响[J]. 华东师范大学学报(自然科学版), 2023 , 2023(3) : 167 -180 . DOI: 10.3969/j.issn.1000-5641.2023.03.016
Under the dual influence of human activities and natural factors, the coastal zone patterns are prone to rapid changes which can directly or indirectly affect the structure, function, and sustainable development of the coastal ecosystem. Using the coastal zone of Nanhui Dongtan in Shanghai as a typical research area, we used remote sensing interpretation, sea chart digitization, and field investigation to analyze changes in spatial patterns and changes in coastal zones over the last 20 years (from 2000 to 2020). In addition, the effects of coastal engineering (including reclamation engineering and siltation promotion engineering) and S. alterniflora invasion on coastal pattern dynamics were analyzed. The results showed that: ① Since 2000, under the influence of coastal engineering and biological invasion, the land use types of Nanhui Dongtan coastal zone changed from a simple pattern dominated by coastal wetlands to a complex pattern which included multiple land use types (i.e. coastal wetlands, inland wetlands, constructed wetlands, farmland, and construction land). ② Coastal reclamation engineering decreased 11894.7 hm2 of coastal wetlands in the Nanhui Dongtan coastal zone from 2000 to 2005. The reclaimed coastal wetlands were transferred into land use types such as rice fields, ponds, and farmland due to human activities; the reclamation engineering promoted deposition of sediment in the estuary and tidal mudflat (above 0 m) and the intertidal salt marsh developed with increased rates of 320.5 hm2/a and 110.9 hm2/a, respectively; meanwhile, the siltation rate decreased to 286.8 hm2/a and 15.7 hm2/a, respectively, after 2015. After 10 years (2005—2015) of natural recovery, the area of coastal wetlands did not reach the levels seen before reclamation in Year 2000. ③ Two types of siltation promotion engineering—hard siltation promotion engineering and biological siltation promotion engineering—have both significantly promoted the rapid development of coastal wetlands in Nanhui Dongtan. Hard silting promotion engineering with propagation rates of 516.9 hm2/a in tidal mudflats (above 0 m) and 915.7 hm2/a in intertidal salt marshes, respectively, was 5.4 times and 13.9 times higher than rates observed in non-siltation areas; hence, the effects were more significant than biological siltation promotion engineering which only resulted in pattern changes in a limited area between the seawall and the wave dissipation dike by planting S. alterniflora. ④ After introducing S. alterniflora in Nanhui Dongtan, it became the most dominant plant in the Nanhui Dongtan salt marsh, accounting for 56% of the total area; this significantly changed the ecological structure and function of coastal wetlands in 2020. Coastal engineering and biological invasion have a great impact on coastal zone patterns. Although the coastal ecosystem showed a certain resilience to coastal human activities, changes in the wetland type, area, and function were difficult or impossible to recover at a great cost in the future. How to integrate the ecological functions of coastal wetlands and inland wetlands through the implementation of coastal zone restoration, ecological protection, and other measures to achieve the sustainable and healthy development of coastal zones is an important problem for future land and sea planning.
1 | GRINFELDT Y S. Geomorphological engineering studies of anthropogenic variability of relief in the marine coastal zone. IOP Conference Series Earth and Environmental Science, 2021, 677 (5): 052024. |
2 | DAVIDSON N C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 2014, 65 (10): 936- 941. |
3 | LI X W, YU X B, JIANG L, et al. How important are the wetlands in the middle-lower Yangtze River region: An ecosystem service valuation approach. Ecosystem Services, 2014, 10, 54- 60. |
4 | LI X Z, BELLERBY R, CRAFT C, et al. Coastal wetland loss, consequences, and challenges for restoration. Anthropocene Coasts, 2018, 1 (3): 1- 15. |
5 | GEDAN K B, KIRWAN M L, WOLANSKI E, et al. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Climatic Change, 2010, 106 (1): 7- 29. |
6 | MAO D H, WANG Z M, WU J G, et al. China’s wetlands loss to urban expansion. Land Degradation and Development, 2018, 29 (8): 2644- 2657. |
7 | LIU T, YANG X J. Monitoring land changes in an urban area using satellite imagery, GIS and landscape metrics. Applied Geography, 2015, 56, 42- 54. |
8 | WANG X X, XIAO X M, ZOU Z H, et al. Tracking annual changes of coastal tidal flats in China during 1986—2016 through analyses of Landsat images with Google Earth Engine. Remote Sens Environ, 2020, 238 (3): 110987. |
9 | CLARK M L, KILHAM N E. Mapping of land cover in northern California with simulated hyperspectral satellite imagery. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 119 (6): 228- 245. |
10 | YANG Y Y, LIU Y S, LI Y R, et al. Quantifying spatiotemporal patterns of urban expansion in Beijing during 1985—2013 with rural-urban development transformation. Land Use Policy, 2018, 74 (5): 220- 230. |
11 | 魏帆. 1985—2015年围填海活动影响下的环渤海滨海湿地演变特征. 生态学杂志, 2018, 37 (5): 1527- 1537. |
12 | ZHU M S, SUN T, SHAO D D. Impact of land reclamation on the evolution of shoreline change and nearshore vegetation distribution in Yangtze River Estuary. Wetlands, 2014, 36, 11- 17. |
13 | LAENGNER M L, SITEUR K, WAL D V D. Trends in the seaward extent of saltmarshes across Europe from long-term satellite data. Remote Sensing, 2019, 11 (14): 1- 25. |
14 | HU Y K, TIAN B, YUAN L, et al. Mapping coastal salt marshes in China using time series of Sentinel-1 SAR. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173, 122- 134. |
15 | 何钰滢. 长江口扁担沙动力地貌变化过程研究. 海洋学报, 2020, 42 (5): 104- 116. |
16 | DU J L, YANG S L, FENG H. Recent human impacts on the morphological evolution of the Yangtze River delta foreland: A review and new perspectives. Estuarine, Coastal and Shelf Science, 2016, 181 (11): 160- 169. |
17 | 徐俊杰. 基于RS与GIS的南汇东滩围垦研究. 上海国土资源, 2011, 32 (3): 18- 22. |
18 | YUAN L, ZHANG L Q, XIAO D R, et al. The application of cutting plus waterlogging to control Spartina alterniflora on saltmarshes in the Yangtze Estuary, China . Estuarine, Coastal and Shelf Science, 2011, 92 (1): 103- 110. |
19 | YUAN L, LIU D Y, TIAN B, et al. A solution for restoration of critical wetlands and waterbird habitats in coastal deltaic systems. Journal of Environmental Management, 2022, 302, 113996. |
20 | 张斌. 长江口滩涂围垦后水鸟群落结构的变化——以南汇东滩为例. 生态学报, 2011, 31 (16): 4599- 4608. |
21 | 陈万逸. 上海南汇东滩鸟类栖息地营造工程的生境评价. 海洋环境科学, 2012, 31 (4): 561- 566. |
22 | FEHER L C, HESTER M W. The interactive effects of created salt marsh substrate type, hydrology, and nutrient regime on Spartina alterniflora and Avicennia germinans productivity and soil development . Wetlands Ecology and Management, 2018, 26 (4): 715- 728. |
23 | 闫振宁. 高程对盐沼湿地互花米草生长与扩散的影响. 生态环境学报, 2021, 30 (6): 1183- 1191. |
24 | 黄建文. 高分六号宽幅多光谱数据人工林类型分类. 遥感学报, 2021, 25 (2): 539- 548. |
25 | 樊咏阳. 长江口水下三角洲演变规律及河势控制初探. 海洋工程, 2020, 38 (4): 91- 99. |
26 | LIU Z Q, CHEN M H, LI Y M, et al. Different effects of reclamation methods on macrobenthos community structure in the Yangtze Estuary, China. Marine Pollution Bulletin, 2018, 127, 429- 436. |
27 | WU W T, YANG Z Q, TIAN B, et al. Impacts of coastal reclamation on wetlands: Loss, resilience, and sustainable management. Estuarine, Coastal and Shelf Science, 2018, 210, 153- 161. |
28 | YING C, WEI D J, MING X X, et al. Land claim and loss of tidal flats in the Yangtze Estuary. Scientific Reports, 2016, 6 (1): 24018. |
29 | 李九发. 长江河口南汇嘴潮滩圈围工程前后水沙运动和冲淤演变研究. 泥沙研究, 2010, (3): 31- 37. |
30 | 朱纹君. 1990-2018年黄河三角洲人类活动强度时空格局演变及其驱动因素. 水土保持研究, 2021, 28 (5): 287- 300. |
31 | MELVILLE D S. China’s coasts: A time for cautious optimism?. Wader Study, 2018, 125 (1): 1- 3. |
32 | FREEMAN A M, PAHL J W, WHITE E D, et al. A review of How uncertainties in management decisions are addressed in coastal Louisiana Restoration. Water, 2021, 13 (11): 1528. |
33 | 潘家琳. 海岸圈围对雁鸭类种群及生境的影响研究——以长江口横沙东滩为例. 海洋科学, 2019, 43 (5): 45- 56. |
34 | REYNOLDS M, SULLIVAN B L, HALLSTEIN E, et al. Dynamic conservation for migratory species. Science Advances, 2017, 3 (8): e1700707. |
35 | 吴威. 基于生态系统服务的海岸带生态修复工程成效评估——以鹦鹉洲湿地为例. 华东师范大学学报(自然科学版), 2020, (3): 98- 108. |
36 | BYERLY P, MERKLE B G, HEPNER M. Renewed hope for coastal marshes in Louisiana. American Scientist, 2019, 107 (2): 98- 105. |
37 | 袁秀. 基于水鸟栖息地恢复的黄河三角洲水资源综合利用策略. 资源科学, 2020, 42 (1): 104- 14. |
38 | TENG X, ZHAO Q W, ZHANG P P, et al. Implementing marine functional zoning in China. Marine Policy, 2019, 132, 103484. |
39 | REN G B, ZHAO Y J, WANG J B, et al. Ecological effects analysis of Spartina alterniflora invasion within Yellow River delta using long time series remote sensing imagery . Estuarine, Coastal and Shelf Science, 2020, 249, 107111. |
40 | MCCLELLAN S, ELSEYQUIRK T, LAWS E, et al. Root-zone carbon and nitrogen pools across two chronosequences of coastal marshes formed using different restoration techniques: Dredge sediment versus river sediment diversion. Ecological Engineering, 2021, 169, 106326. |
41 | SCHIRMEL J, BUNDSCHUH M, ENTLING M H, et al. Impacts of invasive plants on resident animals across ecosystems, taxa, and feeding types: A global assessment. Global Change Biology, 2015, 22 (2): 594- 603. |
42 | 赵志远. 生境异质性及源株密度对互花米草入侵力的影响. 生态学报, 2018, 38 (18): 6632- 41. |
43 | 李伟. 海三棱藨草及互花米草对模拟盐胁迫的响应及其耐盐阈值. 生态学杂志, 2018, 37 (9): 2596- 2602. |
44 | KERR D W, HOGLE I B, ORT B S, et al. A review of 15 years of Spartina management in the San Francisco Estuary. Biological Invasions, 2016, 18 (8): 2247- 2266. |
45 | JACKSON M V, FULLER R A, GAN X J, et al. Dual threat of tidal flat loss and invasive Spartina alterniflora endanger important shorebird habitat in coastal mainland China . Journal of Environmental Management, 2021, 278, 111549. |
46 | 陈潘. 互花米草入侵对鸟类的生态影响. 生态学报, 2019, 39 (7): 2282- 90. |
47 | ZHAO Z Y, XU Y, YUAN L, et al. Emergency control of Spartina alterniflora re-invasion with a chemical method in Chongming Dongtan, China . Water Science and Engineering, 2020, 13 (1): 24- 33. |
/
〈 |
|
〉 |