收稿日期: 2023-03-08
录用日期: 2023-04-20
网络出版日期: 2024-07-23
基金资助
国家自然科学基金(42076170, 42176164);上海市教育委员会科研创新计划项目(2019-01-07-00-05-E00027)
Research on the impact of a typhoon on the accretion-erosion of mudflats: Based on UAV photogrammetry and in situ hydrodynamic measurements
Received date: 2023-03-08
Accepted date: 2023-04-20
Online published: 2024-07-23
台风等极端天气会使淤泥质潮滩发生数十厘米的冲淤变化. 在全球变暖导致台风强度及频率增大的背景下, 厘清台风影响下潮滩冲淤变化及其机制, 对潮滩保护与生态系统完整性维持具有重要意义. 本文借助基于运动恢复结构算法的无人机(unmanned aerial vehicle, UAV)摄影测量方法, 于2021年7月“烟花”台风前后对崇明东滩典型样地进行滩面高程测量, 并在盐沼-光滩过渡带现场采集水动力泥沙数据. 结果表明: 无人机摄影测量精度为4.1 cm; 台风影响下光滩区域侵蚀、盐沼区域淤积, 变幅达 ±32 cm. 其原因是: 台风影响下, 光滩区域在天文大潮时波高及水深增大, 达到波浪破碎条件后表层沉积物被侵蚀并被强潮流搬运; 涨潮流携带悬浮泥沙进入盐沼后, 因盐沼缓流消浪作用导致水体挟沙能力下降, 泥沙在盐沼区域沉积. 因此, 盐沼-光滩过渡带呈现光滩区域侵蚀、盐沼区域沉积的冲淤分带性. 本文将无人机摄影测量与同步水动力泥沙现场观测结合, 为深刻认识台风事件对潮滩冲淤的影响提供了新视角.
张新淼 , 薛力铭 , 史本伟 , 张文祥 , 李天佑 , 彭彪彪 , 李秀珍 , 汪亚平 . 台风对淤泥质潮滩冲淤影响研究——基于无人机测量与现场水动力观测[J]. 华东师范大学学报(自然科学版), 2024 , 2024(4) : 150 -160 . DOI: 10.3969/j.issn.1000-5641.2024.04.014
Extreme events such as typhoons can change mudflats by tens of centimeters. It is important for coastal management and ecosystem maintenance to recognize changes in accretion-erosion during typhoons and to understand the mechanisms driving it. In this study, Unmanned Aerial Vehicle (UAV) photogrammetry based on the Structure-from-Motion (SfM) algorithm was used to generate Digital Elevation Models (DEM) of a mudflat in Eastern Chongming, Yangtze Estuary, before and after the passage of Typhoon “In-Fa” (July 2021). Hydrodynamic measurements were conducted from bare flats to marshes to explore the mechanisms of DEM changes. Changes in accretion-erosion observed by UAV photogrammetry presented an obvious zonation of eroded bare flats and accreted marshes. The accuracy of the DEMs is 4.1 cm. Under the impact of the typhoon, the erosion of the bare flat and the accretion of the marsh have a amplitude of ±32 cm. During typhoons, the wave height and water depth in the bare flat increases to the condition of wave breaking, and the surface sediment is eroded and carried by rising tides. But in marshes, the sediment carrying capacity of water columns decreases, and the sediments are deposited. Consequently, the mudflat presents an obvious zonation of accretion-erosion. This study provides a new perspective for deeply understanding the impact of typhoons on the accretion-erosion of mudflats by combining UAV photogrammetry and hydrodynamic measurements.
1 | TANG J W, YE S F, CHEN X C, et al.. Coastal blue carbon: Concept, study method, and the application to ecological restoration. Science China Earth Sciences, 2018, 61 (6): 637- 646. |
2 | 张峰, 周维芝, 张坤.. 湿地生态系统的服务功益及可持续利用. 地理科学, 2003, 23 (6): 674- 679. |
3 | GAO S. Chapter 10 - Geomorphology and Sedimentology of Tidal Flats [M]// PERILLO G M E, WOLANSKI E, CAHOON D R, et al. Coastal Wetlands. 2nd ed. [S. l.]: Elsevier, 2019: 359-381. |
4 | FAN D D, LI C X, WANG D J, et al.. Morphology and sedimentation on open-coast intertidal flats of the Changjiang Delta, China. Journal of Coastal Research, 2004, (s1): 22- 34. |
5 | 任美锷, 张忍顺, 杨巨海, 等.. 风暴潮对淤泥质海岸的影响——以江苏省淤泥质海岸为例. 海洋地质与第四纪地质, 1983, (4): 1- 24. |
6 | FAN D D, GUO Y X, WANG P, et al.. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts. Continental Shelf Research, 2006, 26 (4): 517- 538. |
7 | SHI B W, YANG S L, TEMMERMAN S, et al.. Effect of typhoon-induced intertidal-flat erosion on dominant macrobenthic species (Meretrix meretrix). Limnology and Oceanography, 2021, 66 (12): 4197- 4209. |
8 | BARRAS J A.. Land area changes in coastal Louisiana after Hurricanes Katrina and Rita. U. S. Geological Survey Circular, 2007, (1306): 97- 112. |
9 | KIRWAN M L, MEGONIGAL J P.. Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 2013, 504 (7478): 53- 60. |
10 | 杨世伦, 丁平兴, 赵庆英.. 开敞大河口滩槽冲淤对台风的响应及其动力泥沙机制探讨——以长江口南汇边滩-南槽-九段沙系统为例. 海洋工程杂志, 2002, 20, 69- 75. |
11 | YANG S L, FRIEDRICHS C T, SHI Z, et al.. Morphological response of tidal marshes, flats and channels of the Outer Yangtze River Mouth to a major storm. Estuaries, 2003, 26 (6): 1416- 1425. |
12 | 杨天. 风暴天气下淤泥质潮滩冲淤过程及其动力机制[D]. 上海: 华东师范大学, 2017. |
13 | TURNER R E, BAUSTIAN J J, SWENSON E M, et al.. Wetland sedimentation from hurricanes katrina and rita. Science, 2006, 314 (5798): 449- 452. |
14 | 李高如, 龚国宁, 张生乐, 等.. 台风过程影响下的滨海湿地物理变量观测及湿地系统响应. 海洋学报, 2022, 44, 116- 125. |
15 | XIE W M, HE Q, ZHANG K Q, et al.. Application of terrestrial laser scanner on tidal flat morphology at a typhoon event timescale. Geomorphology, 2017, 292, 47- 58. |
16 | WESTOBY M J, BRASINGTON J, GLASSER N F, et al.. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 2012, 179, 300- 314. |
17 | DAI W Q, LI H, ZHOU Z, et al.. UAV Photogrammetry for elevation monitoring of intertidal mudflats. Journal of Coastal Research, 2018, 85 (s1): 236- 240. |
18 | JAUD M, GRASSO F, LE DANTEC N, et al.. Potential of UAVs for monitoring mudflat morphodynamics (application to the Seine Estuary, France). ISPRS International Journal of Geo-Information, 2016, 5 (4): 50. |
19 | 胡勇, 何旭涛, 徐辉, 等.. RTK无人机在潮间带地形测量中的应用. 地理空间信息, 2021, 19 (4): 41- 43. |
20 | TURNER I L, HARLEY M D, DRUMMOND C D.. UAVs for coastal surveying. Coastal Engineering, 2016, 114, 19- 24. |
21 | ZHANG W M, QI J B, WAN P, et al.. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sensing, 2016, 8 (6): 501. |
22 | 孟菲. 上海成灾台风的气象特征及灾害风险评估[D]. 上海: 上海海洋大学, 2008. |
23 | 范吉庆. 台风对长江口潮间带湿地沉积动力过程的影响[D]. 上海: 华东师范大学, 2019. |
24 | 宋云平. 东中国海沿岸和长江河口余水位数值模拟[D]. 上海: 华东师范大学, 2021. |
25 | YANG S L, LI H, YSEBAERT T, et al.. Spatial and temporal variations in sediment grain size in tidal wetlands, Yangtze Delta: On the role of physical and biotic controls. Estuarine, Coastal and Shelf Science, 2008, 77 (4): 657- 671. |
26 | YANG S L.. Tidal wetland sedimentation in the Yangtze Delta. Journal of Coastal Research, 1999, 15 (4): 1091- 1099. |
27 | 蒋丰佩. 异质潮滩水沙输运研究[D]. 上海: 华东师范大学, 2012. |
28 | 谢卫明. 高浊度河口潮滩动力地貌过程及植被影响研究[D]. 上海: 华东师范大学, 2018. |
29 | CHEN C P, ZHANG C, SCHWARZ C, et al.. Mapping three-dimensional morphological characteristics of tidal salt-marsh channels using UAV structure-from-motion photogrammetry. Geomorphology, 2022, 407, 108235. |
30 | 孙剑雄. 淤泥质潮间带动力-沉积-地貌环境定量刻画及其生物效应[D]. 上海: 华东师范大学, 2022. |
31 | MASON D C, DAVENPORT I J, FLATHER R A, et al.. A sensitivity analysis of the waterline method of constructing a digital elevation model for intertidal areas in ERS SAR scene of Eastern England. Estuarine, Coastal and Shelf Science, 2001, 53 (6): 759- 778. |
32 | 王延霞. 顾及典型地理特征的时序InSAR地面沉降监测方法及应用[D]. 北京: 中国矿业大学, 2015. |
33 | GUARNIERI A, VETTORE A, PIROTTI F, et al.. Retrieval of small-relief marsh morphology from Terrestrial Laser Scanner, optimal spatial filtering, and laser return intensity. Geomorphology, 2009, 113 (1): 12- 20. |
34 | KIM B O.. Tidal modulation of storm waves on a macrotidal flat in the Yellow Sea. Estuarine, Coastal and Shelf Science, 2003, 57 (3): 411- 420. |
35 | POSTMA H.. Transport and accumulation of suspended matter in the Dutch Wadden Sea. Netherlands Journal of Sea Research, 1961, 1 (1): 148- 190. |
36 | 高抒, 贾建军, 于谦.. 绿色海堤的沉积地貌与生态系统动力学原理: 研究综述. 热带海洋学报, 2022, 41 (4): 1- 19. |
37 | 游涛. 波浪在斜坡上的传播破碎及沿岸流研究[D]. 天津: 天津大学, 2004. |
38 | XUE L M, LI X Z, SHI B W, et al.. Pattern-regulated wave attenuation by salt marshes in the Yangtze Estuary, China. Ocean & Coastal Management, 2021, 209, 105686. |
39 | 谢泽昊, 史本伟, 田波, 等.. 盐沼植被缓流能力观测研究——以崇明东滩海三棱藨草盐沼区域为例. 吉林大学学报(地球科学版), 2022, 52, 571- 581. |
/
〈 |
|
〉 |