计算机科学

基于知识蒸馏的轻量化农作物病害识别算法

  • 胡雯婧 ,
  • 蒋龙泉 ,
  • 余俊龙 ,
  • 徐伊茜 ,
  • 刘奇鹏 ,
  • 梁雷 ,
  • 李嘉豪
展开
  • 1. 福州大学 梅努斯国际工程学院, 福州 350108
    2. 工业互联网创新中心(上海)有限公司, 上海 200131
    3. 复旦大学 工程与应用技术研究院, 上海 200433
    4. 上海兰桂骐技术发展股份有限公司, 上海 200131
    5. 牧星智能工业科技(上海)有限公司, 上海 200131
徐伊茜, 女, 博士研究生, 助理研究员, 研究方向为人工智能. E-mail: xuyiqian@fudan.edu.cn

收稿日期: 2023-12-26

  网络出版日期: 2025-01-20

基金资助

临港新片区高新产业和科技创新专项项目 (SH-LG-GK-2020-02-11); 类脑智能科技有限公司和上海类脑芯片与片上智能系统研发与转化功能型平台项目 (17DZ2260900)

版权

华东师范大学学报期刊社, 2025, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Knowledge-distillation-based lightweight crop-disease-recognition algorithm

  • Wenjing HU ,
  • Longquan JIANG ,
  • Junlong YU ,
  • Yiqian XU ,
  • Qipeng LIU ,
  • Lei LIANG ,
  • Jiahao LI
Expand
  • 1. Maynooth International Engineering College, Fuzhou University, Fuzhou 350108, China
    2. Industrial Internet Innovation Center (Shanghai) Co. Ltd., Shanghai 200131, China
    3. Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
    4. Shanghai Lankaukei Technology Development Co. Ltd., Shanghai 200131, China
    5. Muxing Intelligent Industrial Technology (Shanghai) Co. Ltd., Shanghai 200131, China

Received date: 2023-12-26

  Online published: 2025-01-20

Copyright

, 2025, Copyright reserved © 2025.

摘要

农作物病害是威胁农作物生长的主要因素之一, 机器学习算法能高效率实现大范围农作物病害的发现, 有利于对其进行及时处理, 进而提升农作物的产量和质量. 在大范围农业场景中, 由于供电等条件限制, 无法满足服务器等高算力设备的供电需求, 现有深度网络模型大多需要较高算力, 难以部署在低功耗的嵌入式设备上, 给大范围农作物病害的准确识别应用带来障碍. 为解决此问题, 提出了一种基于知识蒸馏的轻量化农作物病害识别模型, 并设计了一种基于残差结构和注意力机制的学生模型, 利用知识蒸馏方法从大规模模型ConvNeXt中迁移学习成果, 在实现模型轻量化的同时保持高精度识别. 实验结果表明, 在模型规模为2.28 MB的条件下, 39类农作物病害图像分类任务的准确率达到了98.72%, 且每类病害的精确率、召回率和特异度均高于90%. 该模型满足了在嵌入式设备中部署的需求, 为农作物病害识别提供了一种实用高效的解决方法.

本文引用格式

胡雯婧 , 蒋龙泉 , 余俊龙 , 徐伊茜 , 刘奇鹏 , 梁雷 , 李嘉豪 . 基于知识蒸馏的轻量化农作物病害识别算法[J]. 华东师范大学学报(自然科学版), 2025 , 2025(1) : 59 -71 . DOI: 10.3969/j.issn.1000-5641.2025.01.005

Abstract

Crop diseases are one of the main factors threatening crop growth. In this regard, machine-learning algorithms can efficiently detect large-scale crop diseases and are beneficial for timely processing and improving crop yield and quality. In large-scale agricultural scenarios, owing to limitations in power supply and other conditions, the power-supply requirements of high-computing-power devices such as servers cannot be fulfilled. Most existing deep-network models require high computing power and cannot be deployed easily on low-power embedded devices, thus hindering the accurate identification and application of large-scale crop diseases. Hence, this paper proposes a lightweight crop-disease-recognition algorithm based on knowledge distillation. A student model based on a residual structure and the attention mechanism is designed and knowledge distillation is applied to complete transfer learning from the ConvNeXt model, thus achieving the lightweight model while maintaining high-precision recognition. The experimental results show that the accuracy of image classification for 39 types of crop diseases is 98.72% under a model size of 2.28 MB, which satisfies the requirement for deployment in embedded devices and indicates a practical and efficient solution for crop-disease recognition.

参考文献

1 SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al.. The global burden of pathogens and pests on major food crops. Nature Ecology & Evolution, 2019, 3 (3): 430- 439.
2 杨红云, 万颖, 王映龙, 等.. 基于批归一化与AlexNet网络的水稻病害识别. 激光与光电子学进展, 2021, 58 (6): 164- 174.
3 李好, 邱卫根, 张立臣.. 改进ShuffleNet V2的轻量级农作物病害识别方法. 计算机工程与应用, 2022, 58 (12): 260- 268.
4 谢湘慧, 谢晓春, 章倩丽, 等.. 基于迁移学习和边缘计算的农作物病害识别. 赣南师范大学学报, 2022, 43 (6): 61- 66.
5 LIU Y, GAO G Q, ZHANG Z H.. Crop disease recognition based on modified light-weight CNN with attention mechanism. IEEE Access, 2022, 10, 112066- 112075.
6 JI M M, ZHANG L, WU Q F.. Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Information Processing in Agriculture, 2020, 7 (3): 418- 426.
7 王春山, 周冀, 吴华瑞, 等.. 改进Multi-scale ResNet的蔬菜叶部病害识别. 农业工程学报, 2020, 36 (20): 209- 217.
8 肖天赐, 陈燕红, 李永可, 等.. 基于改进通道注意力机制的农作物病害识别模型研究. 江苏农业科学, 2023, 51 (24): 168- 175.
9 牛思琪, 马睿, 许晓琳, 等. 基于改进CBAM注意力机制的MobileNetV2玉米种子品种识别研究 [J]. 中国粮油学报, 2024, 39(3): 159-165.
10 LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s [C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 11976-11986.
11 ZHANG Y Y, XU A, LAN D Q, et al.. ConvNeXt-based anchor-free object detection model for infrared image of power equipment. Energy Reports, 2023, 9(Supplement 7), 1121- 1132.
文章导航

/