近年来人们对Orlicz空间感兴趣, 因为
定义0.1 设
$ \lim\limits_{t\rightarrow 0^{+}}\frac{\Phi(t)}{t}=0, \quad \lim\limits_{t\rightarrow \infty}\frac{\Phi(t)}{t}=\infty. $ |
则称
Young函数
$ \begin{align*} &\Phi(\alpha t)\leqslant \alpha \Phi(t), \alpha\in(0, 1], \\ &\Phi(\alpha t)> \alpha \Phi(t), \alpha\in(1, \infty). \end{align*} $ |
定义0.2 设
$ \Phi(2t)\leqslant C\Phi(t), $ |
则称Young函数
定义0.3 设
$ \rho(u, \Phi)=\int_{0}^{\infty }\Phi(|u(x)|){\rm{d}}x $ |
存在的在区间
$ \|u\|_{(\Phi)}=\inf\limits_{\lambda>0}\Big\{\frac{1}{\lambda}: \rho (\lambda u, \Phi)\leqslant1\Big\} $ |
的Orlicz类
(1) Orlicz空间
$ \Big|\int_{0}^{\infty }u(x)v(x){\rm{d}}x\Big|\leqslant2\|u\|_{(\Phi)}\|v\|_{(\Psi)}. $ |
(2)
$ \|u\|_{\Phi}= \sup\limits_{\rho(v, \Psi)\leqslant1}\Big|\int_{0}^{\infty } u(x)v(x){\rm{d}}x\Big|, $ |
它与Luxemburg范数等价, 即
$ \begin{align} \|u\|_{(\Phi)}\leqslant\|u\|_{\Phi}\leqslant 2 \|u\|_{(\Phi)}. \end{align} $ | (0.1) |
对于
$ \begin{align*} K_{r, \varphi}(f, t^{r})_{\Phi}&=\inf\limits_{g}\{\|f-g\|_{\Phi}+t^{r}\|\varphi^{r}g^{(r)}\|_{\Phi}:g^{(r-1)}\in A.C._{loc}\}, \\ \omega_{r, \varphi}(f, t)_{\Phi}&=\sup\limits_{0<h\leqslant t}\|\Delta_{h\varphi}^{r}f\|_{\Phi}. \end{align*} $ |
我们在文献[2]中得到了如下的连续模与
定理0.1[2] 设
$ \begin{align} C^{-1}\omega_{r, \varphi}(f, t)_{\Phi}\leqslant K_{r, \varphi}(f, t^{r})_{\Phi}\leqslant C\omega_{r, \varphi}(f, t)_{\Phi}. \end{align} $ | (0.2) |
本文中
Orlicz空间
$ \theta(f, x)=\sup\limits_{0< y<\infty, y\neq x}\frac{1}{y-x}\int_{x}^{y}f(t){\rm{d}}t. $ |
如果
性质0.1 对于
$ \begin{align} \|\theta(f)\|_{\Phi}\leqslant C\| f\|_{\Phi}. \end{align} $ | (0.3) |
Gamma算子
$ G_{n}(f;x)=\int_{0}^{\infty }g_{n}(x, t)f\Big(\frac{n}{t}\Big){\rm{d}}t, $ |
其中
另一种定义为:
$ G_{n}(f; x)=\frac{1}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}f\Big(\frac{nx}{t}\Big){\rm{d}}t, x\in(0, \infty). $ |
Müller在文献[4]中介绍过这些Gamma算子.随后在文献[2-3, 5-13]中研究了Gamma算子的逼近性质.我们在文献[2-3]中分别研究了Gamma算子在Orlicz空间
定理A[2] 设
$ \omega_{\varphi}^{2}\Big(f, \dfrac{1}{n}\Big)_{\Phi}\leqslant C\dfrac{l}{n}\Big(\|G_{n}f-f\|_{\Phi}+\|G_{l}f-f\|_{\Phi}\Big), $ |
其中
定理B[3] 设
$ K_{\varphi}^{2}\Big(f^{(s)}, \frac{1}{n}\Big)_{w, \Phi}\leqslant C\frac{l}{n}\Big(\|w(G_{n}^{(s)}f-f^{(s)})\|_{\Phi}+ \|w(G_{l}^{(s)}f-f^{(s)})\|_{\Phi}\Big), $ |
其中
为了得到更好的逼近性质, Sablonnière在文献[14]中引进了一类所谓的拟中插式算子.从而开始研究算子的拟中插式的逼近性质.设
$ \mathbb{B}_{n}^{(r)}=\mathbb{A}_{n}^{(r)}\circ\mathbb{B}_{n}, \quad 0\leqslant r\leqslant n, $ |
这里
对于
$ G_{n}^{(k)}(f):=\mathbb{A}_{n}^{(k)}G_{n}(f)=\sum\limits_{j=0}^{k}\alpha_{j}^{n}D^{j}G_{n}f=\sum\limits_{j=0}^{k}\alpha_{j}^{n}(G_{n}f)^{(j)}, $ |
其中
Müller在文献[15]中给出了左拟中插式Gamma算子, 且在
为了证明正定理, 需要给出下面几个引理.
引理1.1[15] 对于
$ \begin{align} \alpha_{j}^{n}=\alpha_{j}^{n}(x)=\Big(\frac{x}{n}\Big)^{j}L_{j}^{(n-j)}(n), \end{align} $ | (1.1) |
其中
$ \begin{align} \Big|\frac{1}{n^{j}}L_{j}^{(n-j)}(n)\Big|\leqslant Cn^{-\frac{j}{2}}, \end{align} $ | (1.2) |
其中
引理1.2[15] 对于
$ T_{m, n, l}(x):=\frac{1}{(n+l)!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1}\Big(\frac{nx}{t}-x\Big)^{m}{\rm{d}}t $ |
则
$ \begin{align} 0\leqslant T_{m, n, l}(x)\leqslant C\frac{x^{m}}{n^{[\frac{m+1}{2}]}}, \end{align} $ | (1.3) |
其中
引理1.3[3] 设
$ \|v\|_{\Psi}\leqslant C\frac{n}{t}. $ |
引理1.4 对于
$ \|G_{n}^{(k)}f\|_{\Phi}\leqslant C\|f\|_{\Phi}. $ |
证明 由文献[2]知
$ \begin{align} \|G_{n}f\|_{\Phi}\leqslant 2\|f\|_{\Phi}. \end{align} $ | (1.4) |
利用式(1.1)、(1.2)和(1.4), 得到
$ \begin{align} \|G_{n}^{(k)}f\|_{\Phi}&\leqslant\|G_{n}f\|_{\Phi}+\sum\limits_{j=2}^{k}\Big| \frac{1}{n^{j}}L_{j}^{(n-j)}(n)\Big|\cdot \big\|\varphi^{j}(G_{n}f)^{(j)}\big\|_{\Phi} \nonumber\\[1mm] &\leqslant2\|f\|_{\Phi}+\sum\limits_{j=2}^{k}Cn^{-\frac{j}{2}} \big\|\varphi^{j}(G_{n}f)^{(j)}\big\|_{\Phi}. \end{align} $ | (1.5) |
所以只需估计
$ \begin{align} \frac{\partial^{k}}{\partial x^{k}}g_{n}(x, t)=\frac{k!}{x^{k}}g_{n}(x, t)L_{k}^{(n+1-k)}(xt), \end{align} $ | (1.6) |
且
$ \begin{align} \int_{0}^{\infty }\textrm{e}^{-t}t^{a}|L_{k}^{(a)}(t)|^{2}{\rm{d}}x=\frac{\Gamma(k+a+1)}{k!}, a>-1. \end{align} $ | (1.7) |
利用引理1.3, 式(0.1)、(1.6)、(1.7), Hölder不等式和Cauchy-Schwarz不等式得到
$ \begin{align} &\|\varphi^{j}(G_{n}f)^{(j)}\|_{\Phi}=\sup\limits_{\rho(v, \Psi)\leq1} \Big|\int_{0}^{\infty }\Big( \varphi^{j}(x)\int_{0}^{\infty } \frac{\partial^{j}}{\partial x^{j}}g_{n}(x, u)f \Big(\frac{n}{u}\Big){\rm{d}}u\Big)v(x){\rm{d}}x\Big| \nonumber\\ &=\sup\limits_{\rho(v, \Psi)\leq1}\Big|\int_{0}^{\infty } \frac{1}{n!}\int_{0}^{\infty } \textrm{e}^{-t}t^{n}L_{j}^{(n+1-j)}(t)f\Big(\frac{nx}{t}\Big) {\rm{d}}tv(x){\rm{d}}x\Big|\nonumber\\ &\leqslant\frac{1}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{j}^{(n+1-j)}(t)|\sup\limits_{\rho(v, \Psi) \leqslant\frac{n}{t}}\|f\|_{(\Phi)}\|v\|_{\Psi}\frac{t}{n}{\rm{d}}t\nonumber\\ &\leqslant\frac{\|f\|_{\Phi}}{n!}\int_{0}^{\infty }\Big(\textrm{e}^{-t}t^{n+1-j}\Big)^{\frac{1}{2}} |L_{j}^{(n+1-j)}(t)|\Big(\textrm{e}^{-t}t^{n+1-j}\Big)^{\frac{1}{2}}t^{j-1}{\rm{d}}t\nonumber\\ &\leqslant\frac{\|f\|_{\Phi}}{n!}\Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1-j}|L_{j}^{(n+1-j)}(t)|^{2}{\rm{d}}t\Big)^{\frac{1}{2}} \Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1-j}t^{2j-2}{\rm{d}}t\Big)^{\frac{1}{2}} \nonumber\\ &=\frac{\|f\|_{\Phi}}{\sqrt{j!}}(n+1)n^{\frac{j}{2}-1}\sqrt{\prod\limits_{i=2}^{j-1} \Big(1+\frac{i}{n}\Big)} \leqslant Cn^{\frac{j}{2}}\|f\|_{\Phi}. \end{align} $ | (1.8) |
结合式(1.5)和式(1.8)就能得到
$ \|G_{n}^{(k)}f\|_{\Phi}\leqslant C\|f\|_{\Phi}. $ |
定理1.1(正定理) 对于
$ \|G_{n}^{(2r-1)}f-f\|_{\Phi}\leqslant C\omega_{2r, \varphi}(f, n^{-\frac{1}{2}})_{\Phi}, $ |
其中
证明 设
$ g(t)=\sum\limits_{j=0}^{2r-1}\frac{1}{j!}(t-x)^{j}g^{(j)}(x)+R_{2r}(g, t, x), $ |
其中
$ G_{n}^{(2r-1)}(g, x)-g(x)=G_{n}^{(2r-1)}\big(R_{2r}(g, t, x);x\big), $ |
且
$ \begin{align} &\big\|G_{n}^{(2r-1)}g-g\big\|_{\Phi}=\Big\|\sum\limits_{j=0}^{2r-1}\alpha_{j}^{n}D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\Big\|_{\Phi} \nonumber\\[1mm] &\leqslant\Big\|G_{n}\big(R_{2r}(g, \cdot, x);x\big)\Big\|_{\Phi}+C \sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}} \Big\|\varphi^{j}(x)D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\Big\|_{\Phi}. \end{align} $ | (1.9) |
先估计
$ \frac{|t-u|}{\varphi(u)}\leqslant\frac{|t-x|}{\varphi(x)}, $ |
且
$ \frac{1}{u}\leqslant\frac{1}{x}+\frac{1}{t}. $ |
从而有
$ \begin{align} |R_{2r}(g, t, x)|&=\frac{1}{(2r-1)!}\Big|\int_{x}^{t}(t-u)^{2r-1}g^{(2r)}(u){\rm{d}}u\Big| \nonumber\\[1mm] &=\frac{1}{(2r-1)!}\Big|\int_{x}^{t}\Big(\frac{t-u}{\varphi(u)}\Big)^{2r-1}\cdot\frac{1}{u} \varphi^{2r}(u)g^{(2r)}(u){\rm{d}}u\Big|\nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\cdot\frac{|t-x|^{2r-1}}{\varphi^{2r-1}(x)}\Big(\frac{1}{x}+\frac{1}{t}\Big) \Big|\int_{x}^{t}\varphi^{2r}(u)g^{(2r)}(u){\rm{d}}u\Big| \nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\cdot\frac{(t-x)^{2r}}{\varphi^{2r-1}(x)}\Big(\frac{1}{x}+\frac{1}{t}\Big) |\theta(\varphi^{2r}g^{(2r)}, x)|. \end{align} $ | (1.10) |
设
$ \begin{align} T_{m, n}(x)\leqslant\frac{C x^{m}}{n^{[\frac{m+1}{2}]}}, \end{align} $ | (1.11) |
其中
$ \begin{align} &|G_{n}(R_{2r}(g, t, x);x)|\leqslant G_{n}(|R_{2r}(g, t, x)|;x) \nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\Big|\theta(\varphi^{2r}g^{(2r)}, x)\Big|\Big[\frac{1}{x^{2r}}T_{2r, n}(x)+ \frac{1}{x^{2r-1}}G_{n}\Big(\frac{(t-x)^{2r}}{t}, x\Big)\Big] \nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\Big|\theta(\varphi^{2r}g^{(2r)}, x)\Big|\Big[\frac{1}{x^{2r}}\cdot \frac{Cx^{2r}}{n^{r}}+\frac{1}{x^{2r-1}}(Cn^{-2r}x^{4r})^ {\frac{1}{2}}(G_{n}(t^{-2}, x))^{\frac{1}{2}}\Big] \nonumber\\[1mm] &\leqslant Cn^{-r}\big|\theta(\varphi^{2r}g^{(2r)}, x)\big|. \end{align} $ | (1.12) |
再由式(0.1), 式(0.3)和式(1.12)得
$ \begin{align} &\|G_{n}(R_{2r}(g, t, x);x)\|_{\Phi}\leqslant2\inf\limits_{\lambda>0}\Big\{\lambda:\int_{0}^{\infty }\Phi\Big(\Big| \frac{Cn^{-r}\theta(\varphi^{2r}g^{(2r)}, x)}{\lambda}\Big|\Big){\rm{d}}x\leqslant1\Big\} \nonumber\\ &\leqslant Cn^{-r}\|\theta(\varphi^{2r}g^{(2r)})\|_{(\Phi)}\leqslant Cn^{-r}\|\theta(\varphi^{2r}g^{(2r)})\|_{\Phi} \leqslant Cn^{-r}\|\varphi^{2r}g^{(2r)}\|_{\Phi}. \end{align} $ | (1.13) |
再估计
$ \begin{align} &\big|\varphi^{j}(x)D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\big|=\frac{j!}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{j}^{(n+1-j)}(t)|\Big|R_{2r}\Big(g, \frac{nx}{t}, x\Big)\Big|{\rm{d}}t \nonumber \\[1mm] &\leqslant\frac{j!}{n!(2r-1)!}|\theta(\varphi^{2r}g^{(2r)}, x)|\Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{j}^{(n+1-j)}(t)|\frac{(\frac{nx}{t}-x)^{2r}}{x^{2r}}{\rm{d}}t \nonumber\\[1mm] &\quad +\frac{1}{n}\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1}|L_{j}^{(n+1-j)}(t)|\frac{(\frac{nx}{t}-x)^{2r}}{x^{2r}}{\rm{d}}t\Big) \nonumber\\[1mm] &:=\frac{j!}{n!(2r-1)!}|\theta(\varphi^{2r}g^{(2r)}, x)|\big(I_{1}(x)+I_{2}(x)\big). \end{align} $ | (1.14) |
由Cauchy-Schwarz不等式, 式(1.3), 式(1.7), 得
$ \begin{align} &I_{1}(x)=\frac{1}{x^{2r}}\cdot\frac{1}{n!} \int_{0}^{\infty }(\textrm{e}^{-t}t^{n+j-1})^{\frac{1}{2}} \Big(\frac{nx}{t}-x\Big)^{2r}(\textrm{e}^{-t}t^{n+1-j})^{\frac{1}{2}}|L_{j}^{(n+1-j)}(t)|{\rm{d}}t \nonumber\\[1mm] &\leqslant\frac{1}{x^{2r}}\Big(\frac{1}{n!} \int_{0}^{\infty }\textrm{e}^{-t}t^{n+j-1} \Big(\frac{nx}{t}-x\Big)^{4r}{\rm{d}}t\Big)^{\frac{1}{2}} \Big(\frac{1}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1-j}|L_{j}^{(n+1-j)}(t)|^{2}{\rm{d}}t\Big)^{\frac{1}{2}} \nonumber\\[1mm] &\leqslant\frac{1}{x^{2r}}\Big(\frac{(n+j-1)!}{n!}T_{4r, n, j-1}(x) \Big)^{\frac{1}{2}}\Big(\frac{n+1}{j!}\Big)^{\frac{1}{2}} \leqslant Cn^{-r+\frac{j}{2}}. \end{align} $ | (1.15) |
同理可得
$ \begin{align} I_{2}(x)\leqslant Cn^{-r+\frac{j}{2}}. \end{align} $ | (1.16) |
结合式(0.3), 式(1.9), 式(1.13)--(1.16), 得到
$ \begin{align} \|G_{n}^{(2r-1)}g-g\|_{\Phi}\leqslant Cn^{-r}\|\varphi^{2r}g^{(2r)}\|_{\Phi}. \end{align} $ | (1.17) |
对于任何
$ \begin{align*} \|G_{n}^{(2r-1)}f-f\|_{\Phi}&\leqslant \|G_{n}^{(2r-1)}(f-g)-(f-g)\|_{\Phi}+\|G_{n}^{(2r-1)}g-g\|_{\Phi}\\ &\leqslant C(\|f-g\|_{\Phi}+n^{-r}\|\varphi^{2r}g^{(2r)}\|_{\Phi})\leqslant C\omega_{2r, \varphi}(f, n^{-\frac{1}{2}})_{\Phi}. \end{align*} $ |
引理2.1 设
$ \begin{align} \|\varphi^{2r+m}(G_{n}f)^{(2r+m)}\|_{\Phi}\leqslant Cn^{\frac{m}{2}}\|\varphi^{2r}f^{(2r)}\|_{\Phi}, \end{align} $ | (2.1) |
其中
证明 当
$ (G_{n}f)^{(2r)}(x)=\frac{n^{2r}}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n-2r}f^{(2r)}\Big(\frac{nx}{t}\Big){\rm{d}}t =\frac{n^{2r}(n-2r)!}{n!}\int_{0}^{\infty }g_{n-2r}(x, u)f^{(2r)}\Big(\frac{n}{u}\Big){\rm{d}}u. $ |
对于
$ \begin{align*} [(G_{n}f)^{(2r)}]^{(m)}(x)&=\frac{n^{2r}(n-2r)!}{n!}\int_{0}^{\infty }\frac{\partial^{m}}{\partial x^{m}} g_{n-2r}(x, u)f^{(2r)}\Big(\frac{n}{u}\Big){\rm{d}}u \\[1mm] &=\frac{n^{2r}(n-2r)!}{n!}\cdot\frac{m!}{x^{m}}\int_{0}^{\infty } g_{n-2r}(x, u)L_{m}^{(n-2r+1-m)}(xu)f^{(2r)}\Big(\frac{n}{u}\Big){\rm{d}}u \\[1mm] & =\frac{m!}{n!x^{2r+m}}\int_{0}^{\infty }\textrm{e}^{-t} t^{n}L_{m}^{(n-2r+1-m)}(t)\Big(\frac{nx}{t}\Big)^{2r}f^{(2r)} \Big(\frac{nx}{t}\Big){\rm{d}}t. \end{align*} $ |
利用Hölder不等式, 引理1.3及Cauchy-Schwarz不等式, 得
$ \begin{align*} &\|\varphi^{2r+m}(G_{n}f)^{(2r+m)}\|_{\Phi} \\ &=\sup\limits_{\rho(v, \Psi)\leqslant1}\Big|\int_{0}^{\infty }\frac{m!}{n!} \int_{0}^{\infty }\textrm{e}^{-t}t^{n}L_{m}^{(n-2r+1-m)}(t) \Big(\frac{nx}{t}\Big)^{2r}f^{(2r)}\Big(\frac{nx}{t}\Big){\rm{d}}tv(x){\rm{d}}x\Big| \\ &\leqslant\frac{m!}{n!}\int_{0}^{\infty } \textrm{e}^{-t}t^{n}|L_{m}^{(n-2r+1-m)}(t)|{\rm{d}}t \sup\limits_{\rho(v, \Psi)\leqslant1}\Big|\int_{0}^{\infty } \Big(\frac{nx}{t}\Big)^{2r}f^{(2r)}\Big(\frac{nx}{t}\Big)v(x){\rm{d}}x\Big| \\ &=\frac{m!}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}\frac{t}{n}|L_{m}^{(n-2r+1-m)}(t)|{\rm{d}}t \sup\limits_{\rho(v, \Psi)\leqslant\frac{n}{t}} \Big|\int_{0}^{\infty }\varphi^{2r}(u)f^{(2r)}(u)v(u){\rm{d}}u\Big|\\ &\leqslant\frac{m!}{n!}\|\varphi^{2r}f^{(2r)}\|_{\Phi}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{m}^{(n-2r+1-m)}(t)|{\rm{d}}t \\ &=\frac{m!}{n!}\|\varphi^{2r}f^{(2r)}\|_{\Phi}\Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n-2r+1-m} |L_{m}^{(n-2r+1-m)}(t)|^{2}{\rm{d}}t\Big)^{\frac{1}{2}}\Big(\int_{0}^{\infty }\textrm{e}^{-t} t^{n+2r-1+m}{\rm{d}}t\Big)^{\frac{1}{2}} \\ &=\frac{m!}{n!}\|\varphi^{2r}f^{(2r)}\|_{\Phi}\Big[\frac{(n-2r+1)!}{m!}\Big]^{\frac{1}{2}}\Big[(n+2r+m-1)!\Big]^{\frac{1}{2}} \\ &\leqslant Cn^{\frac{m}{2}}\|\varphi^{2r}f^{(2r)}\|_{\Phi}. \end{align*} $ |
引理2.2 对于
$ \|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}\leqslant C n^{r}\|f\|_{\Phi}, \quad f\in L_{\Phi}^{*}(0, \infty), $ | (2.2) |
$ \|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}\leqslant C \|\varphi^{2r}f^{(2r)}\|_{\Phi}, \quad f\in U. $ | (2.3) |
证明 先证式(2.2).由式(1.2)和式(1.8)得
$ \begin{align*} &\|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}=\Big\|\varphi^{2r}\Big(\sum\limits_{j=0}^{2r-1}\frac{1}{n^{j}}L_{j}^{(n-j)} (n)\varphi^{j}(G_{n}f)^{(j)}\Big)^{(2r)}\Big\|_{\Phi}\\ &=\Big\|\varphi^{2r}(G_{n}f)^{(2r)}+\sum\limits_{j=2}^{2r-1}\frac{1}{n^{j}}L_{j}^{(n-j)}(n)\varphi^{2r}\sum\limits_{k=0}^{j} {2r \choose k}k!{j \choose k}\varphi^{j-k}(G_{n}f)^{(2r-k+j)}\Big\|_{\Phi}\\ &\leqslant\|\varphi^{2r}(G_{n}f)^{(2r)}\|_{\Phi}+C \sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j} \|\varphi^{2r+j-k}(G_{n}f)^{(2r-k+j)}\|_{\Phi}\\ &\leqslant C\Big(n^{r}\|f\|_{\Phi}+\sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j}n^{r+\frac{j-k}{2}}\|f\|_{\Phi}\Big) \\[-1mm] &\leqslant Cn^{r}\|f\|_{\Phi}. \end{align*} $ |
再证式(2.3).由式(2.1)得
$ \begin{align*} &\|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}\leqslant\|\varphi^{2r}(G_{n}f)^{(2r)}\|_{\Phi}+C \sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j} \|\varphi^{2r+j-k}(G_{n}f)^{(2r-k+j)}\|_{\Phi}\\[-2mm] &\leqslant C\|\varphi^{2r}f^{(2r)}\|_{\Phi}+C\sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j} n^{\frac{j-k}{2}}\|\varphi^{2r}f^{(2r)}\|_{\Phi} \leqslant C\|\varphi^{2r}f^{(2r)}\|_{\Phi}. \end{align*} $ |
定理2.1(逆定理) 设
$ \omega_{2r, \varphi}(f, t)_{\Phi}=O(t^{2\alpha})\hspace{3.5mm}(t\rightarrow0^{+}). $ |
证明 由式(2.2), 式(2.3),
$ K_{2r, \varphi}(f, n^{-r})_{\Phi}\leqslant C_{1}n^{-\alpha}+ C_{2}\Big(\frac{k}{n}\Big)^{r}K_{2r, \varphi}(f, k^{-r})_{\Phi}, \quad k\geqslant4r. $ |
由Berens-Lorentz引理及
$ \omega_{2r, \varphi}(f, n^{-\frac{1}{2}})_{\Phi}=O(n^{-\alpha}). $ |
即
$ \omega_{2r, \varphi}(f, t)_{\Phi}=O(t^{2\alpha}). $ |
利用定理1.1和定理2.1, 就能得到如下等价定理.
定理2.2(等价定理) 设
$ \|G^{(2r-1)}_{n}f-f\|_{\Phi}=O(n^{-\alpha})\hspace{3.5mm}(n\rightarrow\infty)\Leftrightarrow \omega_{2r, \varphi}(f, t)_{\Phi}=O(t^{2\alpha})\hspace{3.5mm}(t\rightarrow0^{+}). $ |
注2.1 定理2.2的逼近结果比定理A和定理B的结果好.这表明拟中插式Gamma算子与Gamma算子相比较其优点在于逼近速度更快, 逼近阶更高.
[1] | HE Y Z. Ba spaces and Orlicz space[J]. Function Spaces and Complex Analysis, 1997, 2: 37-62. |
[2] | 韩领兄, 吴嘎日迪, 刘国锋. Orlicz空间中加权光滑模与K-泛函的等价性及其应用[J]. 数学物理学报, 2014, 34A(1): 95-108. |
[3] | 韩领兄, 吴嘎日迪. Gamma算子在Orlicz空间Lφ*(0, ∞)中加Jacobi权同时逼近的强逆不等式[J]. 高校应用数学学报, 2016, 31A(3): 366-378. |
[4] | MÜLLER M W. Die Folge der Gammaoperatoren[D]. Stuttgart: Stu ttgart University, 1967. http://www.ams.org/mathscinet-getitem?mr=235360 |
[5] | LUPAS A, MACHE D H, MÜLLER M W. Weighted Lp-approximation of derivatives by the method of Gammaoperators[J]. Results Math, 1995, 28: 277-286. DOI:10.1007/BF03322258 |
[6] | LUPAS A, MACHE D H, MAIER V, et al. Linear combinations of gamma operators in Lp-spaces[J]. Results Math, 1998, 34: 156-168. DOI:10.1007/BF03322046 |
[7] | LUPAS A, MÜLLER M W. Approximationseigenschaften der Gammaoperator en[J]. Math Z, 1967, 98: 208-226. DOI:10.1007/BF01112415 |
[8] | MÜLLER M W. Punktweise und gleichmaßige Approximation durc h Gammaoperatoren[J]. Math Z, 1968, 103: 227-238. DOI:10.1007/BF01111041 |
[9] | MÜLLER M W. Einige Approximationseigenschaften der Gammaop eratoren[J]. Mathematica, 1968, 10(33): 303-310. |
[10] | TOTIK V. The gammaoperators in Lp-spaces[J]. Publ Math Debrecen, 1985, 32: 43-55. |
[11] | DITZIAN Z, TOTIK V. Moduli of Smoothness[M]. New York: Springer-Verlag, 1987. |
[12] | GUO S S, QI Q L. Pointwise weighted simultaneous approximation by Gamma operators[J]. J Nanjing University Mathematical Biquarterly, 2003, 20(1): 24-37. |
[13] | 齐秋兰, 郭顺生, 黄苏霞. Gamma算子在Lp(1 ≤ p ≤ ∞)空间带权同时逼近的强逆不等式[J]. 数学物理学报, 2008, 28A(3): 537-545. |
[14] | SABLONNIÈRE P. Representation of quasi interplants as differential operators and applications[J]. International Series of Numerical Mathematics, 1999, 132: 233-252. |
[15] | MÜLLER M W. The central approximation theorems for the method of left Gamma quasi-interpolants in Lp spaces[J]. Journal of Computational Analysis and Applicactions, 2001, 3(3): 207-222. DOI:10.1023/A:1011545410900 |
[16] | 韩领兄, 吴嘎日迪. Bernstein Durrmeyer算子拟中插式在Orlicz空间中的逼近[J]. 数学杂志, 2017, 37(3): 488-496. |