文章快速检索     高级检索
  华东师范大学学报(自然科学版)  2018 Issue (2): 31-40  DOI: 10.3969/j.issn.1000-5641.2018.02.004
0

引用本文  

韩领兄. 左拟中插式Gamma算子在Orlicz空间中的逼近性质[J]. 华东师范大学学报(自然科学版), 2018, (2): 31-40. DOI: 10.3969/j.issn.1000-5641.2018.02.004.
HAN Ling-xiong. Approximation properties of the left quasi-interpolants Gamma operators in Orlicz spaces[J]. Journal of East China Normal University (Natural Science), 2018, (2): 31-40. DOI: 10.3969/j.issn.1000-5641.2018.02.004.

基金项目

国家自然科学基金(11461052);内蒙古自治区自然科学基金(2016MS0118);内蒙古民族大学科学研究项目(NMDYB15087)

作者简介

韩领兄, 女, 副教授, 研究方向为函数逼近论.E-mail:hlx2980@163.com

文章历史

收稿日期:2017-03-22
左拟中插式Gamma算子在Orlicz空间中的逼近性质
韩领兄     
内蒙古民族大学 数学学院, 内蒙古 通辽 028043
摘要:为了得到更快的逼近速度,人们开始研究算子的拟中插式的逼近性质.在Orlicz空间中讨论左拟中插式Gamma算子的逼近性质,利用了Ditzian-Totik模与K-泛函的等价性、Hölder不等式、Cauchy-Schwarz不等式和Laguerre多项式等等工具得到了逼近的正、逆和等价定理,推广了左拟中插式Gamma算子在Lp空间中的逼近结果,改进了Gamma算子在Orlicz空间的逼近性质.
关键词左拟中插式Gamma算子    K-泛函    连续模    等价定理    
Approximation properties of the left quasi-interpolants Gamma operators in Orlicz spaces
HAN Ling-xiong    
College of Mathematics, Inner Mongolia University for the Nationalities, Tongliao Inner Mongolia 028043, China
Abstract: In order to reach better approximation degree, people start to study the quasiinterpolants of operators. In this paper, approximation properties of left quasi-interpolants Gamma operators are discussed by the tools of Ditizan-Totik modulus, K-functional, Hölder's inequality, Cauchy-Schwarz's inequality and Laguerre polynomials and so on. Then we obtain the direct, inverse and equivalence theorems which generalize the results of left quasi-interpolants Gamma operators in Lp space and improve the approximation properties of Gamma operators in Orlicz spaces.
Key words: left quasi-interpolants Gamma operator    K-functional    modulus of smoothness    equivalence theorem    
0 引言

近年来人们对Orlicz空间感兴趣, 因为$L_{p}$空间提供的活动天地和度量标准只适合于处理线性的和充其量是多项式型的非线性问题.随着越来越多非线性问题的出现, 从$L_{p}$空间过渡到Orlicz空间已成为历史的必然, 这正是研究Orlicz空间的意义所在.下面介绍Orlicz空间$L_{\Phi}^{*}(0, \infty)$(见文献[1]).

定义0.1  设$\Phi(t)$为定义在区间$(0, \infty)$上的凸连续函数, 若$\Phi(t)$满足

$ \lim\limits_{t\rightarrow 0^{+}}\frac{\Phi(t)}{t}=0, \quad \lim\limits_{t\rightarrow \infty}\frac{\Phi(t)}{t}=\infty. $

则称$\Phi(t)$为Young函数.

Young函数$\Phi(t)$的互余Young函数记为$\Psi(t)$.由Young函数$\Phi(t)$的凸性得到

$ \begin{align*} &\Phi(\alpha t)\leqslant \alpha \Phi(t), \alpha\in(0, 1], \\ &\Phi(\alpha t)> \alpha \Phi(t), \alpha\in(1, \infty). \end{align*} $

定义0.2  设$\Phi(t)$为Young函数.若存在常数$t_{0}>0$$C\geqslant1$, 使得当$t\geqslant t_{0}$时, 有

$ \Phi(2t)\leqslant C\Phi(t), $

则称Young函数$\Phi(t)$满足$\Delta_{2}$-条件(记为$\Phi\in\Delta_{2}$).

定义0.3  设$\Phi(t)$为Young函数. Orlicz类$L_{\Phi} (0, \infty)$为使有限积分

$ \rho(u, \Phi)=\int_{0}^{\infty }\Phi(|u(x)|){\rm{d}}x $

存在的在区间$(0, \infty)$上可测的函数$ u(x)$的全体. Orlicz空间$L_\Phi^*(0, \infty)$为赋予Luxemburg范数

$ \|u\|_{(\Phi)}=\inf\limits_{\lambda>0}\Big\{\frac{1}{\lambda}: \rho (\lambda u, \Phi)\leqslant1\Big\} $

的Orlicz类$L_{\Phi} (0, \infty)$的线性包.有如下性质.

(1) Orlicz空间$L_\Phi^*(0, \infty)$是Banach空间且成立如下的Hölder不等式

$ \Big|\int_{0}^{\infty }u(x)v(x){\rm{d}}x\Big|\leqslant2\|u\|_{(\Phi)}\|v\|_{(\Psi)}. $

(2) $L_\Phi^*(0, \infty)$空间的Orlicz范数定义为

$ \|u\|_{\Phi}= \sup\limits_{\rho(v, \Psi)\leqslant1}\Big|\int_{0}^{\infty } u(x)v(x){\rm{d}}x\Big|, $

它与Luxemburg范数等价, 即

$ \begin{align} \|u\|_{(\Phi)}\leqslant\|u\|_{\Phi}\leqslant 2 \|u\|_{(\Phi)}. \end{align} $ (0.1)

对于$f\in L_\Phi^*(0, \infty)$, 加权函数$\varphi(x)=x$$K$-泛函与Ditzian-Totik模的定义[2]

$ \begin{align*} K_{r, \varphi}(f, t^{r})_{\Phi}&=\inf\limits_{g}\{\|f-g\|_{\Phi}+t^{r}\|\varphi^{r}g^{(r)}\|_{\Phi}:g^{(r-1)}\in A.C._{loc}\}, \\ \omega_{r, \varphi}(f, t)_{\Phi}&=\sup\limits_{0<h\leqslant t}\|\Delta_{h\varphi}^{r}f\|_{\Phi}. \end{align*} $

我们在文献[2]中得到了如下的连续模与$K$-泛函的等价性定理.

定理0.1[2]  设$f\in L_{\Phi}^{*}(0, \infty)$, 则存在常数$C$$t_{0}$, 使得当$0<t\leqslant t_{0}$时, 有

$ \begin{align} C^{-1}\omega_{r, \varphi}(f, t)_{\Phi}\leqslant K_{r, \varphi}(f, t^{r})_{\Phi}\leqslant C\omega_{r, \varphi}(f, t)_{\Phi}. \end{align} $ (0.2)

本文中$C$表示正常数, 不同的场合其值有所不同.

Orlicz空间$L_{\Phi}^{*}(0, \infty)$具有Hardy-Littlewood性质[3].对于函数$f\in L_{\Phi}^{*}(0, \infty)$的Hardy-Littlewood函数为

$ \theta(f, x)=\sup\limits_{0< y<\infty, y\neq x}\frac{1}{y-x}\int_{x}^{y}f(t){\rm{d}}t. $

如果$f\in L_{\Phi}^{*}(0, \infty)$时总有$\theta(f, x)\in L_{\Phi}^{*}(0, \infty)$,则称$L_{\Phi}^{*}(0, \infty)$具有Hardy-Littlewood性质(简记为$L_{\Phi}^{*}(0, \infty)\in$HLP).由文献[3]的性质2.1、性质2.2直接得到下面的性质.

性质0.1  对于$f\in L_{\Phi}^{*}(0, \infty)$, 若$\Psi\in\Delta_{2}$, 则Orlicz空间$ L_{\Phi}^{*}(0, \infty)\in$HLP, 且

$ \begin{align} \|\theta(f)\|_{\Phi}\leqslant C\| f\|_{\Phi}. \end{align} $ (0.3)

Gamma算子$G_{n}$有两种定义.设$f(x)$$(0, \infty)$上的可积函数, 则

$ G_{n}(f;x)=\int_{0}^{\infty }g_{n}(x, t)f\Big(\frac{n}{t}\Big){\rm{d}}t, $

其中$g_{n}(x, t)=\frac{x^{n+1}}{n!}\textrm{e}^{-xt}t^{n}, x\in(0, \infty)$.

另一种定义为:

$ G_{n}(f; x)=\frac{1}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}f\Big(\frac{nx}{t}\Big){\rm{d}}t, x\in(0, \infty). $

Müller在文献[4]中介绍过这些Gamma算子.随后在文献[2-3, 5-13]中研究了Gamma算子的逼近性质.我们在文献[2-3]中分别研究了Gamma算子在Orlicz空间$L_{\Phi}^{*}(0, \infty)$中同时逼近的强逆不等式和加Jacobi权同时逼近的强逆不等式, 得到如下结果.

定理A[2]  设$f\in L_{\Phi}^{*}(0, \infty)$, $n>1$, $\Psi\in\Delta_{2}$, $\varphi(x)=x$, 则存在常数$K>1$, 当$l\leqslant Kn$时, 有

$ \omega_{\varphi}^{2}\Big(f, \dfrac{1}{n}\Big)_{\Phi}\leqslant C\dfrac{l}{n}\Big(\|G_{n}f-f\|_{\Phi}+\|G_{l}f-f\|_{\Phi}\Big), $

其中$C$是与$n$$x$无关的正常数.

定理B[3]  设$wf^{(s)}\!\in\! L_{\Phi}^{*}(0, \infty)$, $s\!\in\! \textbf{N}$, $n\!>\!s+1$, $a\geqslant s-2$, $a+b\geqslant s-2$, $\Psi\in\Delta_{2}$, 则存在常数$K>1$, 当$l\geqslant Kn$时, 有

$ K_{\varphi}^{2}\Big(f^{(s)}, \frac{1}{n}\Big)_{w, \Phi}\leqslant C\frac{l}{n}\Big(\|w(G_{n}^{(s)}f-f^{(s)})\|_{\Phi}+ \|w(G_{l}^{(s)}f-f^{(s)})\|_{\Phi}\Big), $

其中$\varphi(x)=x$, $w(x)=x^{a}(1+x)^{b}$.

为了得到更好的逼近性质, Sablonnière在文献[14]中引进了一类所谓的拟中插式算子.从而开始研究算子的拟中插式的逼近性质.设$\Pi_{n}$表示次数至多为$n$的多项式空间, 若$\mathbb{B}_{n}$$\mathbb{A}_{n}=\mathbb{B}_{n}^{-1}$$\Pi_{n}$中的线性自同构算子, 并且能够表示成带有多项式系数的微分算子形式$\mathbb{B}_{n}= \sum\limits_{k=0}^{n}\beta_{k}^{n}D^{k}$$\mathbb{A}_{n}=\sum\limits_{k=0}^{n}\alpha_{k}^{n}D^{k}$.这里$D=\frac{{\rm{d}}}{{\rm{d}}x}$, $D^{0}=\textrm{id}$, 则一类拟中插式算子定义如下

$ \mathbb{B}_{n}^{(r)}=\mathbb{A}_{n}^{(r)}\circ\mathbb{B}_{n}, \quad 0\leqslant r\leqslant n, $

这里$\mathbb{A}_{n}^{(r)}=\sum\limits_{k=0}^{n}\alpha_{k}^{n}D^{k}$.通常在$\Pi_{n}$$\mathbb{B}_{n}^{(0)}=\mathbb{B}_{n}$, $\mathbb{B}_{n}^{(n)}=\textrm{id}$.进而还有, 当$0\leqslant r\leqslant n$时, 对于所有的$P\in\Pi_{n}$, 有$\mathbb{B}_{n}^{(r)}P=P$.

对于$f\in L_{\Phi}^{*}(0, \infty)$, 左拟中插式Gamma算子为

$ G_{n}^{(k)}(f):=\mathbb{A}_{n}^{(k)}G_{n}(f)=\sum\limits_{j=0}^{k}\alpha_{j}^{n}D^{j}G_{n}f=\sum\limits_{j=0}^{k}\alpha_{j}^{n}(G_{n}f)^{(j)}, $

其中$\alpha_{j}^{n}$为Laguerre多项式.显然$G_{n}^{(0)}=G_{n}$, $G_{n}^{(n)}=\textrm{id}$, 对于$P\in\Pi_{n}$, 有$G_{n}^{(k)}(P)=P$, $0\leqslant k\leqslant n.$

Müller在文献[15]中给出了左拟中插式Gamma算子, 且在$L_{p}$空间中研究了其逼近性质.我们在文献[16]中研究了拟中插式Bernstein-Durrmeyer算子在Orlicz空间$L_{M}^{*}[0, 1]$中的逼近性质, 并得到了等价定理.在文献[2-3, 16]的研究基础上, 本文继续在由Young函数构成的Orlicz空间$L_{\Phi}^{*}(0, \infty)$中研究左拟中插式Gamma算子的逼近性质, 并得到了正定理、逆定理和等价定理.

1 正定理

为了证明正定理, 需要给出下面几个引理.

引理1.1[15]  对于$j\in \bf{N}_{0}$, $n\geqslant j$, $x\in(0, \infty)$

$ \begin{align} \alpha_{j}^{n}=\alpha_{j}^{n}(x)=\Big(\frac{x}{n}\Big)^{j}L_{j}^{(n-j)}(n), \end{align} $ (1.1)

其中$L_{j}^{(\alpha)}(x)=\sum_{r=0}^{j}(-1)^{r}{j+\alpha \choose j-r}\frac{x^{r}}{r!}=\frac{(\alpha+1)_{j}}{j!}\sum_{r=0}^{j}(-1)^{r} {j \choose r}\frac{x^{r}}{(\alpha+1)_{r}}$$j$阶Laguerre多项式且对于$a\in \bf{R}$, $(a)_{j}:=a(a+1)\cdots(a+j-1)$.特别$\alpha_{0}^{n}=1, \alpha_{1}^{n}=0$.并且有

$ \begin{align} \Big|\frac{1}{n^{j}}L_{j}^{(n-j)}(n)\Big|\leqslant Cn^{-\frac{j}{2}}, \end{align} $ (1.2)

其中$C$为只与$j$有关的正常数.

引理1.2[15]  对于$m, n, l\in \bf{N}_{0}$, $n\geqslant m$, $x\in(0, \infty)$, 定义

$ T_{m, n, l}(x):=\frac{1}{(n+l)!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1}\Big(\frac{nx}{t}-x\Big)^{m}{\rm{d}}t $

$ \begin{align} 0\leqslant T_{m, n, l}(x)\leqslant C\frac{x^{m}}{n^{[\frac{m+1}{2}]}}, \end{align} $ (1.3)

其中$C$为只与$m$有关的正常数.

引理1.3[3]  设$\int_{0}^{\infty }\Psi\Big(|v(x)|\Big){\rm{d}}x\leqslant \frac{n}{t}$, 则存在常数$C\leqslant1$, 使得

$ \|v\|_{\Psi}\leqslant C\frac{n}{t}. $

引理1.4  对于$k\in \bf{N}_{0}$, $n\geqslant \max\{2, k\}$, $f\in L_{\Phi}^{*}(0, \infty)$, $\varphi(x)=x$, 有

$ \|G_{n}^{(k)}f\|_{\Phi}\leqslant C\|f\|_{\Phi}. $

证明  由文献[2]知

$ \begin{align} \|G_{n}f\|_{\Phi}\leqslant 2\|f\|_{\Phi}. \end{align} $ (1.4)

利用式(1.1)、(1.2)和(1.4), 得到

$ \begin{align} \|G_{n}^{(k)}f\|_{\Phi}&\leqslant\|G_{n}f\|_{\Phi}+\sum\limits_{j=2}^{k}\Big| \frac{1}{n^{j}}L_{j}^{(n-j)}(n)\Big|\cdot \big\|\varphi^{j}(G_{n}f)^{(j)}\big\|_{\Phi} \nonumber\\[1mm] &\leqslant2\|f\|_{\Phi}+\sum\limits_{j=2}^{k}Cn^{-\frac{j}{2}} \big\|\varphi^{j}(G_{n}f)^{(j)}\big\|_{\Phi}. \end{align} $ (1.5)

所以只需估计$\big\|\varphi^{j}(G_{n}f)^{(j)}\big\|_{\Phi}.$由文献[6]知

$ \begin{align} \frac{\partial^{k}}{\partial x^{k}}g_{n}(x, t)=\frac{k!}{x^{k}}g_{n}(x, t)L_{k}^{(n+1-k)}(xt), \end{align} $ (1.6)

$ \begin{align} \int_{0}^{\infty }\textrm{e}^{-t}t^{a}|L_{k}^{(a)}(t)|^{2}{\rm{d}}x=\frac{\Gamma(k+a+1)}{k!}, a>-1. \end{align} $ (1.7)

利用引理1.3, 式(0.1)、(1.6)、(1.7), Hölder不等式和Cauchy-Schwarz不等式得到

$ \begin{align} &\|\varphi^{j}(G_{n}f)^{(j)}\|_{\Phi}=\sup\limits_{\rho(v, \Psi)\leq1} \Big|\int_{0}^{\infty }\Big( \varphi^{j}(x)\int_{0}^{\infty } \frac{\partial^{j}}{\partial x^{j}}g_{n}(x, u)f \Big(\frac{n}{u}\Big){\rm{d}}u\Big)v(x){\rm{d}}x\Big| \nonumber\\ &=\sup\limits_{\rho(v, \Psi)\leq1}\Big|\int_{0}^{\infty } \frac{1}{n!}\int_{0}^{\infty } \textrm{e}^{-t}t^{n}L_{j}^{(n+1-j)}(t)f\Big(\frac{nx}{t}\Big) {\rm{d}}tv(x){\rm{d}}x\Big|\nonumber\\ &\leqslant\frac{1}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{j}^{(n+1-j)}(t)|\sup\limits_{\rho(v, \Psi) \leqslant\frac{n}{t}}\|f\|_{(\Phi)}\|v\|_{\Psi}\frac{t}{n}{\rm{d}}t\nonumber\\ &\leqslant\frac{\|f\|_{\Phi}}{n!}\int_{0}^{\infty }\Big(\textrm{e}^{-t}t^{n+1-j}\Big)^{\frac{1}{2}} |L_{j}^{(n+1-j)}(t)|\Big(\textrm{e}^{-t}t^{n+1-j}\Big)^{\frac{1}{2}}t^{j-1}{\rm{d}}t\nonumber\\ &\leqslant\frac{\|f\|_{\Phi}}{n!}\Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1-j}|L_{j}^{(n+1-j)}(t)|^{2}{\rm{d}}t\Big)^{\frac{1}{2}} \Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1-j}t^{2j-2}{\rm{d}}t\Big)^{\frac{1}{2}} \nonumber\\ &=\frac{\|f\|_{\Phi}}{\sqrt{j!}}(n+1)n^{\frac{j}{2}-1}\sqrt{\prod\limits_{i=2}^{j-1} \Big(1+\frac{i}{n}\Big)} \leqslant Cn^{\frac{j}{2}}\|f\|_{\Phi}. \end{align} $ (1.8)

结合式(1.5)和式(1.8)就能得到

$ \|G_{n}^{(k)}f\|_{\Phi}\leqslant C\|f\|_{\Phi}. $

定理1.1(正定理)  对于$n\geqslant4r$, $f\in L_{\Phi}^{*}(0, \infty)$, 有

$ \|G_{n}^{(2r-1)}f-f\|_{\Phi}\leqslant C\omega_{2r, \varphi}(f, n^{-\frac{1}{2}})_{\Phi}, $

其中$C$为只与$r$有关的正常数.

证明  设$W_{\Phi}^{2r}=\big\{g: g^{(2r-1)}\in A.C._{loc}, \varphi^{2r}g^{(2r)}\in L_{\Phi}^{*}(0, \infty)\big\}$, 则对于$g\in W_{\Phi}^{2r}$用泰勒公式展开得

$ g(t)=\sum\limits_{j=0}^{2r-1}\frac{1}{j!}(t-x)^{j}g^{(j)}(x)+R_{2r}(g, t, x), $

其中$R_{2r}(g, t, x)=\frac{1}{(2r-1)!}\int_{x}^{t}(t-u)^{2r-1}g^{(2r)}(u){\rm{d}}u$, $x, t\in(0, \infty).$注意到左拟中插式Gamma算子的定义, 式(1.2)及$\alpha_{0}^{n}=1$, $\alpha_{1}^{n}=0$, 就能得到

$ G_{n}^{(2r-1)}(g, x)-g(x)=G_{n}^{(2r-1)}\big(R_{2r}(g, t, x);x\big), $

$ \begin{align} &\big\|G_{n}^{(2r-1)}g-g\big\|_{\Phi}=\Big\|\sum\limits_{j=0}^{2r-1}\alpha_{j}^{n}D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\Big\|_{\Phi} \nonumber\\[1mm] &\leqslant\Big\|G_{n}\big(R_{2r}(g, \cdot, x);x\big)\Big\|_{\Phi}+C \sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}} \Big\|\varphi^{j}(x)D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\Big\|_{\Phi}. \end{align} $ (1.9)

先估计$\|G_{n}\big(R_{2r}(g, \cdot, x);x\big)\|_{\Phi}$.由文献[11]知当$u$$x$$t$之间时有不等式

$ \frac{|t-u|}{\varphi(u)}\leqslant\frac{|t-x|}{\varphi(x)}, $

$ \frac{1}{u}\leqslant\frac{1}{x}+\frac{1}{t}. $

从而有

$ \begin{align} |R_{2r}(g, t, x)|&=\frac{1}{(2r-1)!}\Big|\int_{x}^{t}(t-u)^{2r-1}g^{(2r)}(u){\rm{d}}u\Big| \nonumber\\[1mm] &=\frac{1}{(2r-1)!}\Big|\int_{x}^{t}\Big(\frac{t-u}{\varphi(u)}\Big)^{2r-1}\cdot\frac{1}{u} \varphi^{2r}(u)g^{(2r)}(u){\rm{d}}u\Big|\nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\cdot\frac{|t-x|^{2r-1}}{\varphi^{2r-1}(x)}\Big(\frac{1}{x}+\frac{1}{t}\Big) \Big|\int_{x}^{t}\varphi^{2r}(u)g^{(2r)}(u){\rm{d}}u\Big| \nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\cdot\frac{(t-x)^{2r}}{\varphi^{2r-1}(x)}\Big(\frac{1}{x}+\frac{1}{t}\Big) |\theta(\varphi^{2r}g^{(2r)}, x)|. \end{align} $ (1.10)

$T_{m, n}(x):=G_{n}\big((t-x)^{m}, x\big)$, 则由文献[6]知

$ \begin{align} T_{m, n}(x)\leqslant\frac{C x^{m}}{n^{[\frac{m+1}{2}]}}, \end{align} $ (1.11)

其中$C$为只与$m$有关的正常数.利用式(1.11), Cauchy-Schwarz不等式和$G_{n}(t^{-2}, x)\leqslant Cx^{-2}$, 得到

$ \begin{align} &|G_{n}(R_{2r}(g, t, x);x)|\leqslant G_{n}(|R_{2r}(g, t, x)|;x) \nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\Big|\theta(\varphi^{2r}g^{(2r)}, x)\Big|\Big[\frac{1}{x^{2r}}T_{2r, n}(x)+ \frac{1}{x^{2r-1}}G_{n}\Big(\frac{(t-x)^{2r}}{t}, x\Big)\Big] \nonumber\\[1mm] &\leqslant\frac{1}{(2r-1)!}\Big|\theta(\varphi^{2r}g^{(2r)}, x)\Big|\Big[\frac{1}{x^{2r}}\cdot \frac{Cx^{2r}}{n^{r}}+\frac{1}{x^{2r-1}}(Cn^{-2r}x^{4r})^ {\frac{1}{2}}(G_{n}(t^{-2}, x))^{\frac{1}{2}}\Big] \nonumber\\[1mm] &\leqslant Cn^{-r}\big|\theta(\varphi^{2r}g^{(2r)}, x)\big|. \end{align} $ (1.12)

再由式(0.1), 式(0.3)和式(1.12)得

$ \begin{align} &\|G_{n}(R_{2r}(g, t, x);x)\|_{\Phi}\leqslant2\inf\limits_{\lambda>0}\Big\{\lambda:\int_{0}^{\infty }\Phi\Big(\Big| \frac{Cn^{-r}\theta(\varphi^{2r}g^{(2r)}, x)}{\lambda}\Big|\Big){\rm{d}}x\leqslant1\Big\} \nonumber\\ &\leqslant Cn^{-r}\|\theta(\varphi^{2r}g^{(2r)})\|_{(\Phi)}\leqslant Cn^{-r}\|\theta(\varphi^{2r}g^{(2r)})\|_{\Phi} \leqslant Cn^{-r}\|\varphi^{2r}g^{(2r)}\|_{\Phi}. \end{align} $ (1.13)

再估计$\big\|\varphi^{j}(x)D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\big\|_{\Phi}$.利用式(1.6)可以得到

$ \begin{align} &\big|\varphi^{j}(x)D^{j}G_{n}\big(R_{2r}(g, \cdot, x);x\big)\big|=\frac{j!}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{j}^{(n+1-j)}(t)|\Big|R_{2r}\Big(g, \frac{nx}{t}, x\Big)\Big|{\rm{d}}t \nonumber \\[1mm] &\leqslant\frac{j!}{n!(2r-1)!}|\theta(\varphi^{2r}g^{(2r)}, x)|\Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{j}^{(n+1-j)}(t)|\frac{(\frac{nx}{t}-x)^{2r}}{x^{2r}}{\rm{d}}t \nonumber\\[1mm] &\quad +\frac{1}{n}\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1}|L_{j}^{(n+1-j)}(t)|\frac{(\frac{nx}{t}-x)^{2r}}{x^{2r}}{\rm{d}}t\Big) \nonumber\\[1mm] &:=\frac{j!}{n!(2r-1)!}|\theta(\varphi^{2r}g^{(2r)}, x)|\big(I_{1}(x)+I_{2}(x)\big). \end{align} $ (1.14)

由Cauchy-Schwarz不等式, 式(1.3), 式(1.7), 得

$ \begin{align} &I_{1}(x)=\frac{1}{x^{2r}}\cdot\frac{1}{n!} \int_{0}^{\infty }(\textrm{e}^{-t}t^{n+j-1})^{\frac{1}{2}} \Big(\frac{nx}{t}-x\Big)^{2r}(\textrm{e}^{-t}t^{n+1-j})^{\frac{1}{2}}|L_{j}^{(n+1-j)}(t)|{\rm{d}}t \nonumber\\[1mm] &\leqslant\frac{1}{x^{2r}}\Big(\frac{1}{n!} \int_{0}^{\infty }\textrm{e}^{-t}t^{n+j-1} \Big(\frac{nx}{t}-x\Big)^{4r}{\rm{d}}t\Big)^{\frac{1}{2}} \Big(\frac{1}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n+1-j}|L_{j}^{(n+1-j)}(t)|^{2}{\rm{d}}t\Big)^{\frac{1}{2}} \nonumber\\[1mm] &\leqslant\frac{1}{x^{2r}}\Big(\frac{(n+j-1)!}{n!}T_{4r, n, j-1}(x) \Big)^{\frac{1}{2}}\Big(\frac{n+1}{j!}\Big)^{\frac{1}{2}} \leqslant Cn^{-r+\frac{j}{2}}. \end{align} $ (1.15)

同理可得

$ \begin{align} I_{2}(x)\leqslant Cn^{-r+\frac{j}{2}}. \end{align} $ (1.16)

结合式(0.3), 式(1.9), 式(1.13)--(1.16), 得到

$ \begin{align} \|G_{n}^{(2r-1)}g-g\|_{\Phi}\leqslant Cn^{-r}\|\varphi^{2r}g^{(2r)}\|_{\Phi}. \end{align} $ (1.17)

对于任何$g\in W_{\Phi}^{2r}$, 由引理1.4, 式(1.17)、(0.2)得

$ \begin{align*} \|G_{n}^{(2r-1)}f-f\|_{\Phi}&\leqslant \|G_{n}^{(2r-1)}(f-g)-(f-g)\|_{\Phi}+\|G_{n}^{(2r-1)}g-g\|_{\Phi}\\ &\leqslant C(\|f-g\|_{\Phi}+n^{-r}\|\varphi^{2r}g^{(2r)}\|_{\Phi})\leqslant C\omega_{2r, \varphi}(f, n^{-\frac{1}{2}})_{\Phi}. \end{align*} $
2 等价定理

引理2.1  设$r, m\!\in\!\bf{N}_{0}$, $\varphi(x)\!=\!x, $ $I\!=\!(0, \infty)$, $ U:=U_{p}^{2r}(\varphi, I):=\{g:g^{(2r-1)}\in A.C._{loc}(I),$$g^{(2r)}, \varphi^{2r}g^{(2r)}\in L_{\Phi}^{*}(I)\} $$L_{\Phi}^{*}(I)$的一个线性流形, 则对于$f\in U$, $n\geqslant2r+m$, 有

$ \begin{align} \|\varphi^{2r+m}(G_{n}f)^{(2r+m)}\|_{\Phi}\leqslant Cn^{\frac{m}{2}}\|\varphi^{2r}f^{(2r)}\|_{\Phi}, \end{align} $ (2.1)

其中$C$为只与$r$, $m$有关的正常数.

证明  当$m=0$时由式(1.8)知式(2.1)成立.当$m>0$时, 由文献[15]知

$ (G_{n}f)^{(2r)}(x)=\frac{n^{2r}}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n-2r}f^{(2r)}\Big(\frac{nx}{t}\Big){\rm{d}}t =\frac{n^{2r}(n-2r)!}{n!}\int_{0}^{\infty }g_{n-2r}(x, u)f^{(2r)}\Big(\frac{n}{u}\Big){\rm{d}}u. $

对于$x\in(0, \infty)$, $n\geqslant 2r+m$, 由式(1.6)得

$ \begin{align*} [(G_{n}f)^{(2r)}]^{(m)}(x)&=\frac{n^{2r}(n-2r)!}{n!}\int_{0}^{\infty }\frac{\partial^{m}}{\partial x^{m}} g_{n-2r}(x, u)f^{(2r)}\Big(\frac{n}{u}\Big){\rm{d}}u \\[1mm] &=\frac{n^{2r}(n-2r)!}{n!}\cdot\frac{m!}{x^{m}}\int_{0}^{\infty } g_{n-2r}(x, u)L_{m}^{(n-2r+1-m)}(xu)f^{(2r)}\Big(\frac{n}{u}\Big){\rm{d}}u \\[1mm] & =\frac{m!}{n!x^{2r+m}}\int_{0}^{\infty }\textrm{e}^{-t} t^{n}L_{m}^{(n-2r+1-m)}(t)\Big(\frac{nx}{t}\Big)^{2r}f^{(2r)} \Big(\frac{nx}{t}\Big){\rm{d}}t. \end{align*} $

利用Hölder不等式, 引理1.3及Cauchy-Schwarz不等式, 得

$ \begin{align*} &\|\varphi^{2r+m}(G_{n}f)^{(2r+m)}\|_{\Phi} \\ &=\sup\limits_{\rho(v, \Psi)\leqslant1}\Big|\int_{0}^{\infty }\frac{m!}{n!} \int_{0}^{\infty }\textrm{e}^{-t}t^{n}L_{m}^{(n-2r+1-m)}(t) \Big(\frac{nx}{t}\Big)^{2r}f^{(2r)}\Big(\frac{nx}{t}\Big){\rm{d}}tv(x){\rm{d}}x\Big| \\ &\leqslant\frac{m!}{n!}\int_{0}^{\infty } \textrm{e}^{-t}t^{n}|L_{m}^{(n-2r+1-m)}(t)|{\rm{d}}t \sup\limits_{\rho(v, \Psi)\leqslant1}\Big|\int_{0}^{\infty } \Big(\frac{nx}{t}\Big)^{2r}f^{(2r)}\Big(\frac{nx}{t}\Big)v(x){\rm{d}}x\Big| \\ &=\frac{m!}{n!}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}\frac{t}{n}|L_{m}^{(n-2r+1-m)}(t)|{\rm{d}}t \sup\limits_{\rho(v, \Psi)\leqslant\frac{n}{t}} \Big|\int_{0}^{\infty }\varphi^{2r}(u)f^{(2r)}(u)v(u){\rm{d}}u\Big|\\ &\leqslant\frac{m!}{n!}\|\varphi^{2r}f^{(2r)}\|_{\Phi}\int_{0}^{\infty }\textrm{e}^{-t}t^{n}|L_{m}^{(n-2r+1-m)}(t)|{\rm{d}}t \\ &=\frac{m!}{n!}\|\varphi^{2r}f^{(2r)}\|_{\Phi}\Big(\int_{0}^{\infty }\textrm{e}^{-t}t^{n-2r+1-m} |L_{m}^{(n-2r+1-m)}(t)|^{2}{\rm{d}}t\Big)^{\frac{1}{2}}\Big(\int_{0}^{\infty }\textrm{e}^{-t} t^{n+2r-1+m}{\rm{d}}t\Big)^{\frac{1}{2}} \\ &=\frac{m!}{n!}\|\varphi^{2r}f^{(2r)}\|_{\Phi}\Big[\frac{(n-2r+1)!}{m!}\Big]^{\frac{1}{2}}\Big[(n+2r+m-1)!\Big]^{\frac{1}{2}} \\ &\leqslant Cn^{\frac{m}{2}}\|\varphi^{2r}f^{(2r)}\|_{\Phi}. \end{align*} $

引理2.2  对于$\varphi(x)=x$, $n\geqslant4r$, 有

$ \|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}\leqslant C n^{r}\|f\|_{\Phi}, \quad f\in L_{\Phi}^{*}(0, \infty), $ (2.2)
$ \|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}\leqslant C \|\varphi^{2r}f^{(2r)}\|_{\Phi}, \quad f\in U. $ (2.3)

证明  先证式(2.2).由式(1.2)和式(1.8)得

$ \begin{align*} &\|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}=\Big\|\varphi^{2r}\Big(\sum\limits_{j=0}^{2r-1}\frac{1}{n^{j}}L_{j}^{(n-j)} (n)\varphi^{j}(G_{n}f)^{(j)}\Big)^{(2r)}\Big\|_{\Phi}\\ &=\Big\|\varphi^{2r}(G_{n}f)^{(2r)}+\sum\limits_{j=2}^{2r-1}\frac{1}{n^{j}}L_{j}^{(n-j)}(n)\varphi^{2r}\sum\limits_{k=0}^{j} {2r \choose k}k!{j \choose k}\varphi^{j-k}(G_{n}f)^{(2r-k+j)}\Big\|_{\Phi}\\ &\leqslant\|\varphi^{2r}(G_{n}f)^{(2r)}\|_{\Phi}+C \sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j} \|\varphi^{2r+j-k}(G_{n}f)^{(2r-k+j)}\|_{\Phi}\\ &\leqslant C\Big(n^{r}\|f\|_{\Phi}+\sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j}n^{r+\frac{j-k}{2}}\|f\|_{\Phi}\Big) \\[-1mm] &\leqslant Cn^{r}\|f\|_{\Phi}. \end{align*} $

再证式(2.3).由式(2.1)得

$ \begin{align*} &\|\varphi^{2r}(G_{n}^{(2r-1)}f)^{(2r)}\|_{\Phi}\leqslant\|\varphi^{2r}(G_{n}f)^{(2r)}\|_{\Phi}+C \sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j} \|\varphi^{2r+j-k}(G_{n}f)^{(2r-k+j)}\|_{\Phi}\\[-2mm] &\leqslant C\|\varphi^{2r}f^{(2r)}\|_{\Phi}+C\sum\limits_{j=2}^{2r-1}n^{-\frac{j}{2}}\sum\limits_{k=0}^{j} n^{\frac{j-k}{2}}\|\varphi^{2r}f^{(2r)}\|_{\Phi} \leqslant C\|\varphi^{2r}f^{(2r)}\|_{\Phi}. \end{align*} $

定理2.1(逆定理)  设$f\in L_{\Phi}^{*}(0, \infty)$, $\varphi(x)=x$, $n\geqslant4r$, $0<\alpha<r$, 且$ \|G^{(2r-1)}_{n}f-f\|_{\Phi}=O(n^{-\alpha})(n\rightarrow\infty)$, 则

$ \omega_{2r, \varphi}(f, t)_{\Phi}=O(t^{2\alpha})\hspace{3.5mm}(t\rightarrow0^{+}). $

证明  由式(2.2), 式(2.3), $\|G_{n}^{(2r-1)}f-f\|_{\Phi}=O(n^{-\alpha})$, 得

$ K_{2r, \varphi}(f, n^{-r})_{\Phi}\leqslant C_{1}n^{-\alpha}+ C_{2}\Big(\frac{k}{n}\Big)^{r}K_{2r, \varphi}(f, k^{-r})_{\Phi}, \quad k\geqslant4r. $

由Berens-Lorentz引理及$K$-泛函与光滑模的等价性便得到

$ \omega_{2r, \varphi}(f, n^{-\frac{1}{2}})_{\Phi}=O(n^{-\alpha}). $

$ \omega_{2r, \varphi}(f, t)_{\Phi}=O(t^{2\alpha}). $

利用定理1.1和定理2.1, 就能得到如下等价定理.

定理2.2(等价定理)  设$f\in L_{\Phi}^{*}(0, \infty)$, $\varphi(x)=x$, $n\geqslant4r$, $\Psi\in\Delta_{2}$, $0<\alpha<r$, 则

$ \|G^{(2r-1)}_{n}f-f\|_{\Phi}=O(n^{-\alpha})\hspace{3.5mm}(n\rightarrow\infty)\Leftrightarrow \omega_{2r, \varphi}(f, t)_{\Phi}=O(t^{2\alpha})\hspace{3.5mm}(t\rightarrow0^{+}). $

注2.1  定理2.2的逼近结果比定理A和定理B的结果好.这表明拟中插式Gamma算子与Gamma算子相比较其优点在于逼近速度更快, 逼近阶更高.

参考文献
[1] HE Y Z. Ba spaces and Orlicz space[J]. Function Spaces and Complex Analysis, 1997, 2: 37-62.
[2] 韩领兄, 吴嘎日迪, 刘国锋. Orlicz空间中加权光滑模与K-泛函的等价性及其应用[J]. 数学物理学报, 2014, 34A(1): 95-108.
[3] 韩领兄, 吴嘎日迪. Gamma算子在Orlicz空间Lφ*(0, ∞)中加Jacobi权同时逼近的强逆不等式[J]. 高校应用数学学报, 2016, 31A(3): 366-378.
[4] MÜLLER M W. Die Folge der Gammaoperatoren[D]. Stuttgart: Stu ttgart University, 1967. http://www.ams.org/mathscinet-getitem?mr=235360
[5] LUPAS A, MACHE D H, MÜLLER M W. Weighted Lp-approximation of derivatives by the method of Gammaoperators[J]. Results Math, 1995, 28: 277-286. DOI:10.1007/BF03322258
[6] LUPAS A, MACHE D H, MAIER V, et al. Linear combinations of gamma operators in Lp-spaces[J]. Results Math, 1998, 34: 156-168. DOI:10.1007/BF03322046
[7] LUPAS A, MÜLLER M W. Approximationseigenschaften der Gammaoperator en[J]. Math Z, 1967, 98: 208-226. DOI:10.1007/BF01112415
[8] MÜLLER M W. Punktweise und gleichmaßige Approximation durc h Gammaoperatoren[J]. Math Z, 1968, 103: 227-238. DOI:10.1007/BF01111041
[9] MÜLLER M W. Einige Approximationseigenschaften der Gammaop eratoren[J]. Mathematica, 1968, 10(33): 303-310.
[10] TOTIK V. The gammaoperators in Lp-spaces[J]. Publ Math Debrecen, 1985, 32: 43-55.
[11] DITZIAN Z, TOTIK V. Moduli of Smoothness[M]. New York: Springer-Verlag, 1987.
[12] GUO S S, QI Q L. Pointwise weighted simultaneous approximation by Gamma operators[J]. J Nanjing University Mathematical Biquarterly, 2003, 20(1): 24-37.
[13] 齐秋兰, 郭顺生, 黄苏霞. Gamma算子在Lp(1 ≤ p ≤ ∞)空间带权同时逼近的强逆不等式[J]. 数学物理学报, 2008, 28A(3): 537-545.
[14] SABLONNIÈRE P. Representation of quasi interplants as differential operators and applications[J]. International Series of Numerical Mathematics, 1999, 132: 233-252.
[15] MÜLLER M W. The central approximation theorems for the method of left Gamma quasi-interpolants in Lp spaces[J]. Journal of Computational Analysis and Applicactions, 2001, 3(3): 207-222. DOI:10.1023/A:1011545410900
[16] 韩领兄, 吴嘎日迪. Bernstein Durrmeyer算子拟中插式在Orlicz空间中的逼近[J]. 数学杂志, 2017, 37(3): 488-496.