传染病是一种可以从一个人或其他物种, 经过各种途径传染给另一个人或物种的感染病.每年有大量人口死于传染性疾病.据世界卫生组织报告显示, 每年大约有100万人死于艾滋病[1], 140万人死于肺结核[2].在传染病的研究中, 数学模型一直发挥着重要作用.近年来,许多研究人员建立了一些数学模型来研究传染病的传播. 1927年, Kermack等[3]首次提出了SIR (易感-感染-康复)模型来研究传染病的传播.该模型将人群分为易感人群(S), 感染人群(I)以及康复人群(R).模型中的个体在最初属于易感人群, 在某个时间点感染疾病变为感染人群, 经过一段时间之后变为康复人群并免疫疾病.然而由于大多数疾病并不能完全免疫, 所以不同于SIR模型, 传染病模型中另一个典型的模型为SIS模型.此时疾病的传播方式为:易感者在某个时期感染疾病, 经过治疗后康复重新成为易感者.为研究此类疾病, 1984年, Hethcote和Yorke[4]提出了如下SIS模型.
$ \begin{eqnarray} \begin{cases} \dfrac{\text{d} S(t)}{\text{d} t}=\mu N-\beta S(t)I(t)+\gamma I(t)-\mu S(t), \\[4mm] \dfrac{\text{d} I(t)}{\text{d} t}=\beta S(t)I(t)-(\mu+\gamma)I(t), \end{cases} \end{eqnarray} $ | (1) |
其中:
$ \begin{eqnarray} \widetilde{\beta}\text{d} t=\beta \text{d} t+\sigma \text{d} B(t), \end{eqnarray} $ | (2) |
其中
$ \begin{eqnarray} \begin{cases} \text{d} S(t)=(\mu N-\beta S(t)I(t)+\gamma I(t)-\mu S(t))\text{d} t -\sigma S(t)I(t)\text{d} B(t), \\[1mm] \text{d} I(t)=(\beta S(t)I(t)-(\mu+\gamma)I(t))\text{d} t+\sigma S(t)I(t)\text{d} B(t). \end{cases} \end{eqnarray} $ | (3) |
模型(3)在几乎处处意义下有全局正解, 且在随机噪声较小时具有唯一的平稳分布; 在随机噪声较大时感染者会以概率1灭绝.然而, 人口数量经常会受到环境因素(例如地震, 洪水, 移民等)的影响而在一瞬间发生剧烈变化.许多实际数据显示, 这种剧烈变化服从一类幂律分布.例如, Richardson[6]在研究1820年至1945年间世界的战争伤亡人数时发现, 伤亡人数服从一类幂律分布. Brockmann等[7]发现, 人类的短期旅行行为可以由距离的递减幂律来刻画.令
$ \begin{eqnarray} \begin{cases} \text{d} S(t)=(\mu N-\beta S(t)I(t)+\gamma I(t)- \mu S(t))\text{d} t-\sigma S(t)I(t)\text{d} Z(t), \\[1mm] \text{d} I(t)=(\beta S(t)I(t)-(\mu+\gamma)I(t)) \text{d} t+\sigma S(t)I(t)\text{d} Z(t). \end{cases} \end{eqnarray} $ | (4) |
比较模型(4)与模型(3), 人们自然会问第一个问题:在什么条件下, 模型(4)具有与模型(3)相同的一些性质?更进一步, 注意到当
$ \begin{align*} \nu(\text{d} z)=\left\{ \begin{array}{l} \frac{C_{\alpha}I_{\{z>0 \}}}{z^{1+\alpha}}\text{d} z, \ \ \ \ \text{若 }{z\neq0, }\\ 0 , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{若 }{z=0, }\\ \end{array} \right. \end{align*} $ |
其中:
$ \begin{align*} \Gamma(s)=\int_0^{+\infty}t^{s-1}\text {exp}{(-t)}\text{d} t, \ \ s\in\mathbb{R}_+, \end{align*} $ |
其中
由于
$ \begin{align} \text{d} I(t)=I(t)[(\beta N-\mu-\gamma-\beta I(t))\text{d} t+\sigma(N-I(t)) \text{d} Z(t)]. \end{align} $ | (5) |
为方便描述, 将
$ \begin{align} \text{d} x(t)=x(t)(\beta N-\mu-\gamma-\beta x(t))\text{d} t+\sigma(N-x(t))x(t) \text{d} Z(t). \end{align} $ | (6) |
对于传染病模型,
$ \begin{eqnarray} P(x(t)>0, t\geqslant 0)=1. \end{eqnarray} $ | (7) |
若一个过程
为了确保所有的样本轨道几乎处处在
(A1)
(A2) 总人数
(A3) Lévy测度
对于研究SIS传染病模型, 一个很重要的内容是基于感染者的历史观测值, 预测感染者的未来人数的区间估计.由于历史数据为时间序列的数据, 一般不相互独立.一个自然的问题是, 在什么条件下这些时间数据近似同分布?精确地说, 这些数据的对应过程是否具有平稳性?进一步, 对应从不同初始值出发, 过程
综上所述, 本文的主要目的是研究以下3个问题.
(1) 在什么条件下, 模型(6)有唯一全局正解?
(2) 在什么条件下, 模型(6)有唯一的平稳分布且指数遍历?
(3) 在什么条件下, 当
本文将部分回答以上3个问题.
1 全局正解令
引理1 若假设(A1)—(A3)成立.对于任意初始值
证 明 因为
$ \begin{align*} x(t_0)=x(t_0-)+\sigma \left(N- x(t_0-)\right) x(t_0-)\Delta Z(t_0-), \end{align*} $ |
这里
$\Delta Z(t_0-) <\frac{1}{\sigma N}. $ |
因此, 几乎处处有
$ \sigma \left(N- x(t_0-)\right) x(t_0-)\Delta Z(t_0-)<N- x(t_0-). $ |
即
定理1 若假设(A1)—(A3)成立, 则对于任意初始值
$ \begin{align*} P\{x(t)\in(0, N), t\geqslant0\}=1. \end{align*} $ |
证 明 将式(6)视为一个
$ \begin{align*} \tau_k=\inf\left\{t\in[0, \tau_e): x(t)\notin\left(\frac{1}{k}, N-\frac{1}{k}\right)\right\}. \end{align*} $ |
显然,
$ \begin{align*} \tau_\infty=\lim\limits_{k\rightarrow\infty}\tau_k, \end{align*} $ |
则
使用反证法, 假设
$ \begin{align*} P\{\tau_\infty\leq T\}>\epsilon. \end{align*} $ |
即存在整数
$ \begin{align}\label{PS10} P\{\tau_k\leq T\}\geqslant\epsilon. \end{align} $ | (8) |
首先, 考虑如下Lyapunov函数
$ \begin{align*} V(x)=\frac{1}{N-x}+\frac{1}{x}, \ \ x\in(0, N). \end{align*} $ |
对过程
$ \begin{align} EV(x(t\wedge\tau_k))=V(x(0))+E\int_0^{t\wedge\tau_k} \text{L} V(x(s))\text{d} s, \ \ t\in[0, T], \ k\geqslant k_2, \end{align} $ | (9) |
其中,
$\begin{align} \text{L} V(x) =\,&\left(\frac{1}{(N-x)^2}-\frac{1}{x^2}\right) x(\beta N-\mu-\gamma-\beta x)+\int_0^{+\infty}\bigg(\frac{1}{x +\sigma x(N-x)z}-\frac{1}{x}\notag\\ &+\frac{1}{N-x-\sigma x(N-x)z}-\frac{1}{N-x}-\frac{\sigma (N-x)}{x}zI_{\{0<z\leqslant1 \}}\notag\\ &+\frac{\sigma x}{N-x}zI_{\{0<z\leqslant1 \}}\bigg)\nu(\text{d} z). \end{align} $ | (10) |
记
$ \begin{align*} A_1(x) =\,&\int_0^1\frac{1}{x}\left(\frac{1}{1+\sigma (N-x)z}-1+\sigma (N-x)z\right)\nu(\text{d} z), \\ A_2(x) =\,&\int_1^{+\infty}\frac{1}{x}\left(\frac{1}{1+\sigma (N-x)z}-1\right)\nu(\text{d} z), \\ C_1(x) =\,&\int_0^1\frac{1}{N-x}\left(\frac{1}{1-\sigma xz}-1-\sigma xz\right)\nu(\text{d} z), \\ C_2(x) =\,&\int_1^{+\infty}\frac{1}{N-x} \left(\frac{1}{1-\sigma xz}-1\right)\nu(\text{d} z), \end{align*} $ |
则有
$ \begin{align} \text{L} V(x)=\left(\frac{1}{(N-x)^2}-\frac{1}{x^2}\right)x(\beta N-\mu-\gamma-\beta x)+A_1(x)+A_2(x)+C_1(x)+C_2(x). \end{align} $ | (11) |
由假设(A1)—(A3), 积分项
对积分
$ \begin{eqnarray} A_1(x) = \frac{\sigma^\alpha (N-x)^\alpha}{x} \int_0^{\frac{N-x}{2N}}\left(\frac{1}{1+y}-1+y\right) \frac{C_\alpha}{y^{\alpha+1}}\text{d} y. \end{eqnarray} $ | (12) |
令
$ \begin{align*} B_1(y)=\frac{(1+y)^{-1}-1+y}{y^2}, \end{align*} $ |
则
$ \begin{align*} B_1(y)=\frac{1}{1+y}. \end{align*} $ |
由函数
$\begin{align} A_1(x)= \frac{\sigma^\alpha (N-x)^\alpha}{x}\int_0^{\frac{N-x}{2N}}B_1(y) \frac{C_{\alpha}}{y^{\alpha-1}}\text{d} y <\frac{1}{x}\cdot\frac{C_\alpha \sigma^\alpha (N-x)^2}{(2-\alpha) (2N)^{2-\alpha}}. \end{align} $ | (13) |
类似积分项
$ \begin{align} C_1(x) =\,&\dfrac{\sigma^\alpha x^\alpha}{N-x} \int_0^{\frac{x}{2N}}\left(\dfrac{1}{1-y}-1 -y\right)\dfrac{C_\alpha}{y^{\alpha+1}}\text{d} y. \end{align} $ | (14) |
令
$\begin{align*} D_1(y)=\frac{(1-y)^{-1}-1-y}{y^2}=\frac{1}{1-y}, \end{align*} $ |
则对任意
$ \begin{align} D_1(y)<\frac{2N}{2N-x}. \end{align} $ | (15) |
因此,
$ \begin{align*} C_1(x) = \frac{\sigma^\alpha x^\alpha}{N-x}\int_0^{\frac{x}{2N}}D_1(y) \frac{C_\alpha}{y^{\alpha-1}}\text{d} y\leq \frac{1}{N-x}\cdot\frac{C_\alpha \sigma^2 }{(2N)^{1-\alpha}(2-\alpha)}\cdot\frac{x^2}{2N-x}. \end{align*} $ |
令
$ \begin{align*} g(x)< g(N)=N. \end{align*} $ |
因此,
$ \begin{align} C_1(x)\leqslant\frac{1}{N-x}\cdot\frac{C_\alpha \sigma^2N^\alpha }{2^{1-\alpha}(2-\alpha)}. \end{align} $ | (16) |
将式(13)、(16)代入式(11), 得到
$ \begin{align*} \text{L} V(x)<\frac{\mu+\gamma}{x}+\frac{\beta N}{N-x}+\frac{1}{x}\cdot\frac{C_\alpha \sigma^\alpha N^\alpha}{(2-\alpha)2^{2-\alpha}}+\frac{1}{N-x}\cdot\frac{C_\alpha \sigma^2N^\alpha }{(2-\alpha)2^{1-\alpha}}. \end{align*} $ |
由上式知, 存在常数
$ \begin{align} \text{L} V(x)< \widetilde{C}V(x), \ \ x\in(0, N), \end{align} $ | (17) |
其中,
$ \begin{align} EV(x(T\wedge\tau_k))\leqslant V(x(0))+\widetilde{C}E\int_0^{T\wedge\tau_k}V(x(s))\text{d} s< V(x(0))+\widetilde{C}\int_0^TEV(x(s\wedge\tau_k))\text{d} s. \end{align} $ | (18) |
再由Gronwall不等式, 知
$ \begin{align*} EV(x(T\wedge\tau_k))< V(x(0))\exp({\widetilde{C}T}). \end{align*} $ |
令
$ \begin{align} P(\Omega_k)\geqslant\epsilon. \end{align} $ | (19) |
注意到, 对任意
$ \begin{align*} x(\tau_k, \omega)\leqslant \frac{1}{k} \ \ \text{或}\ \ N-\frac{1}{k}<x(\tau_k, \omega)<N. \end{align*} $ |
因此,
$ \begin{align*} V(x(\tau_k, \omega))\geqslant k. \end{align*} $ |
则由式(18)和式(19)得到
$ \begin{align*} V(x(0))\exp(\widetilde{C}T)> E\left[I_{\Omega_k}(\omega)V(x(\tau_k, \omega))\right]\geqslant P(\Omega_k)k \geqslant \epsilon k. \end{align*} $ |
当
$ \begin{align*} \infty>V(x(0))\exp{(\widetilde{C}T)}>\infty. \end{align*} $ |
因此
定义1[12] 设
$ \begin{align*} \pi(A)=P(x(0)\in A)=P(x(t)\in A)= \int_ P(t, x, A)\text{d} \pi(x), \ \ \forall t\geqslant0. \end{align*} $ |
引理2 若存在一个有界的开区域
(B1)
(B2) 对任意紧集
则模型(6)有唯一的平稳分布.
证 明 引理的证明类似于文献[13]中定理4.1或文献[14]中引理3.1的证明.基于跳过程的最大值原理与Lévy系统公式[15-16],不难证明本引理.此处省略.
定理2 若假设(A1)—(A3)成立且
证 明 在区间
$ \begin{align*} U = \left\{x\in(0, N):a<x<b\right\}. \end{align*} $ |
首先, 显然有
$ \begin{align} V(x)=x^\theta+x^{-1}, \ \ x\in(0, N), \end{align} $ | (20) |
其中
$ \begin{align*} \text{L} V(x) =\,&\left(\theta x^{\theta-1}-x^{-2} \right)x(\beta N-\mu-\gamma-\beta x)+\int_0^{ +\infty}\Big((x+\sigma x(N-x)z)^\theta-x^\theta\\ &+(x+\sigma x(N-x)z)^{-1}-x^{-1}-\sigma x(N-x)\left(\theta x^{\theta-1}-x^{-2}\right)zI_{\{0<z\leq1\}}\Big)\nu(\text{d} z). \end{align*} $ |
令
$ \begin{align*} A(x) =\,&\left(\theta x^{\theta-1}-x^{-2}\right)x(\beta N-\mu-\gamma-\beta x), \\ B(x) =\,&\int_0^1\left((x+\sigma x(N-x)z)^\theta-x^\theta-\sigma x(N-x)\theta x^{\theta-1}z\right)\nu(\text{d} z)\\ &+\int_1^{+\infty}\left((x+\sigma x(N-x)z)^\theta-x^\theta\right)\frac{C_\alpha \text{d} z}{z^{\alpha+1}}, \\ C(x) =\,&\int_0^1\left((x+\sigma x(N-x)z)^{-1}-x^{-1}+\sigma x(N-x)x^{-2}z\right)\nu(\text{d} z)\\ &+\int_1^{+\infty}\left((x+\sigma x(N-x)z)^{-1}-x^{-1}\right)\nu(\text{d} z), \end{align*} $ |
则有
$ \begin{align} \text{L} V(x)=A(x)+B(x)+C(x). \end{align} $ | (21) |
对于
$ \begin{align*} B(x) = \int_0^1\left((x+\sigma x(N-x)z)^\theta-x^\theta-\sigma x(N-x)\theta x^{\theta-1}z\right)\nu(\text{d} z). \end{align*} $ |
由变量代换
$ \begin{align} B(x)=\, &x^\theta\sigma^\alpha\int_0^\frac{1}{2N}\left((1+(N-x)y)^ \theta-1-\theta(N-x)y\right)\frac{C_\alpha}{y^{\alpha+1}}\text{d} y \end{align} $ | (22) |
$ \begin{align} =\, &x^\theta\sigma^\alpha\int_0^\frac{1}{2N}\frac{(1+(N-x)y)^\theta-1 -\theta(N-x)y}{y^2}\cdot\frac{C_\alpha}{y^{\alpha-1}}\text{d} y. \end{align} $ | (23) |
定义
$ \begin{align} D_2(y)=\frac{(1+(N-x)y)^\theta-1-\theta(N-x)y}{y^2}. \end{align} $ | (24) |
当
$ \begin{align*} \lim\limits_{y\rightarrow0}D_2(y)=\frac{\theta(\theta-1)(N-x)^2}{2}. \end{align*} $ |
因此有
$ \begin{align} D_2(y)\leqslant C_1. \end{align} $ | (25) |
将式(25)代入式(22)得到
$ \begin{eqnarray} B(x) \leqslant x^\theta\sigma^\alpha\int_0^\frac{1}{2N} C_1\frac{C_\alpha}{y^{\alpha-1}}\text{d} y=\frac{C_\alpha\sigma^\alpha x^\theta}{(2-\alpha)(2N)^{2-\alpha}}C_1. \end{eqnarray} $ | (26) |
对于
$ \begin{align*} C(x) = \int_0^1\left((x+\sigma x(N-x)z)^{-1}-x^{-1}+\sigma x(N-x)x^{-2}z\right)\nu(\text{d} z). \end{align*} $ |
计算得到
$ \begin{align} C(x)\leqslant\frac{N^2\sigma^\alpha C_\alpha}{(2-\alpha)(2N)^{2-\alpha}}x^{-1}. \end{align} $ | (27) |
将式(26)和式(27)代入式(21), 得到
$ \begin{align*} \text{L} V(x) \leqslant& \left(\theta x^{\theta}-x^{-1} \right)(\beta N-\mu-\gamma-\beta x)\\ &+\frac{C_\alpha\sigma^\alpha }{(2-\alpha)(2N)^{2-\alpha}} x^\theta C_1+\frac{N^2\sigma^\alpha C_\alpha}{(2-\alpha)(2N) ^{2-\alpha}}x^{-1}\\ =\, &\left((\beta N-\mu-\gamma)\theta+\frac{C_\alpha\sigma^ \alpha }{(2-\alpha)(2N)^{2-\alpha}}C_1\right)x^\theta+ \beta-\theta\beta x^{\theta+1}\\ &-\left(\beta N-\mu-\gamma-\frac{N^2\sigma^\alpha C_\alpha}{(2-\alpha)(2N)^{2-\alpha}}\right)x^{-1}. \end{align*} $ |
由假设
$ \begin{align*} \lim\limits_{x\rightarrow0^+}\text{L} V(x)=-\infty, \ \ \lim\limits_{x\rightarrow+\infty}\text{L} V(x)=-\infty. \end{align*} $ |
则存在充分大的
$ \text{L} V(x)\le -1, \ \ \text{对所有} x\in (0, N)-U. $ | (28) |
又由Itô公式得到
$ \begin{align} \text{d} V(x(t))=\, &\text{L} V(x(t))\text{d} t+\int_0^{+\infty} \Big((x(t)+\sigma x(t)(N-x(t))z)^\theta\nonumber\\ &+(x(t)+\sigma x(t)(N-x(t))z)^{-1}-x^\theta(t)-x^{-1}(t)\Big)\widetilde{N}(\text{d} t, \text{d} z). \end{align} $ | (29) |
令
$ \begin{align*} 0\leqslant V(x_0)-E(t\wedge\tau_U|x(0)=x_0), \ \ \forall t\geqslant0. \end{align*} $ |
令
$\begin{align*} E(\tau_U|x(0)=x_0)\leqslant V(x_0)<+\infty. \end{align*} $ |
因此引理2中条件(B2)得证.证毕.
3 指数遍历性我们已经证明, 当初始值
定义2
$ \begin{align*} ||P(t, x, \cdot)-\pi(\cdot)||_{\text{Var}}\leqslant \beta(x)\exp{(-kt)}, \end{align*} $ |
其中
引理3[18] 设
$ \begin{align*} \text{L} V(x)\leqslant-\xi V(x)+K, \ \ \forall x\in (0, N), \end{align*} $ |
其中
注记 我们的遍历定义对初始值是有限制的.严格来说, 称过程
定理3 若假设(A1)—(A3)成立且
证 明 考虑非负函数
$ \begin{align*} V(x)=\ln(1+x)+x^{-1}, \ \ x\in(0, N). \end{align*} $ |
利用定理1和定理2的计算方法, 易证明, 存在一个常数
$ \begin{align*} \text{L} V(x)\leq\beta N-\mu-\gamma+\beta-\beta x+C-\left(\beta N-\mu-\gamma-\frac{N^2\sigma^\alpha C_\alpha}{(2-\alpha)(2N)^{2-\alpha}}\right)x^{-1}. \end{align*} $ |
由假设
$ \begin{align*} \beta N-\mu-\gamma-\frac{N^2\sigma^\alpha C_\alpha}{(2-\alpha)(2N)^{2-\alpha}}-\xi>0. \end{align*} $ |
则存在常数
$ \begin{align*} \text{L} V(x)+\xi V(x)\leqslant\, &\beta N-\mu-\gamma +\beta-\beta x+\xi\ln(1+x)+C\\ &-\left(\beta N-\mu-\gamma-\frac{N^2\sigma^\alpha C_\alpha}{(2-\alpha)(2N)^{2-\alpha}}-\xi\right)x^{-1}\\ <\, &\beta N-\mu-\gamma+\beta-\beta x+\xi\ln(1+x)+C\\ \leqslant\,&K. \end{align*} $ |
即
$ \begin{align*} \text{L} V(x)\leqslant -\xi V(x)+K. \end{align*} $ |
则由引理3知结论成立.证毕.
4 灭绝性定义3 假设(A1)—(A3)成立, 若对任意初始值
$ \limsup\limits_{t\rightarrow\infty}x(t)=0\ \ \text{几乎处处成立}, $ | (30) |
则称
引理4[19] 令
$ \begin{align*} \rho_{m}(t)=\int_0^t\frac{\text{d} \langle M, M\rangle(s)}{(1+s)^2}, \ \ t\geqslant 0, \end{align*} $ |
其中
$ \lim\limits_{t\rightarrow\infty}\rho_{m}(t)<\infty\ \ \text{几乎处处成立}, $ |
则
$ \lim\limits_{t\rightarrow\infty}\frac{M(t)}{t}=0\ \ \text{几乎处处成立}. $ |
定理4 假设(A1)—(A3)成立, 则模型(6)的解满足
$ \limsup\limits_{t\rightarrow+\infty}\frac{\ln x(t)}{t}\leqslant \beta N-\mu-\gamma \ \ \text{几乎处处成立}. $ |
特别地, 若
$ \lim\limits_{t\rightarrow+\infty}x(t)=0\ \ \text{几乎处处成立}. $ |
证 明 由Itô公式得到
$ \begin{align*} \text{d} \ln(x(t))=\, &(\beta N-\mu-\gamma-\beta x(t)) \text{d} t+\int_0^{+\infty}(\ln (x(t)+\sigma x(t)(N-x(t))z)\\ &-\ln x(t))\widetilde{N}(\text{d} t, \text{d} z)+\int_0^{+\infty} \left[\ln (x(t)+\sigma x(t)(N-x(t))z)\right.\\ &\left.-\ln x(t)-\sigma(N-x(t))zI_{\{0<z\leqslant1\}} \right]\nu(\text{d} z)\text{d} t. \end{align*} $ |
对上式两侧积分, 得到
$ \begin{align} \ln (x(t)) =\,&\ln (x(0))+\int_0^t(\beta N-\mu-\gamma -\beta x(s))\text{d} s+M(t)\notag\\ &+\int_0^t\int_0^{+\infty}\left(\ln (1+\sigma (N-x(t))z)-\sigma(N-x(t))zI_{\{0<z\leqslant1\}}\right)\nu(\text{d} z)\text{d} s\notag\\ =\, &\ln (x(0))+\int_0^t(\beta N-\mu-\gamma-\beta x(s))\text{d} s+M(t)\notag\\ &+\int_0^t\int_0^1\left(\ln (1+\sigma (N-x(t))z)-\sigma(N-x(t))z\right)\nu(\text{d} z) \text{d} s, \end{align} $ | (31) |
其中
$ \begin{align*} M(t)=\int_0^t\int_0^{+\infty}\ln (1+\sigma (N-x(s))z)\widetilde{N}(\text{d} s, \text{d} z) \end{align*} $ |
是一个局部鞅.一方面, 由基本不等式
$ \ln(1+t)\leqslant t, \ \ \forall t>0, $ |
可得
$ \begin{align}\label{Ext6} \int_0^t\int_0^1\left(\ln (1+ \sigma (N-x(t))z)-\sigma(N-x(t))z\right)\nu(\text{d} z)\text{d} s\leqslant0, \end{align} $ | (32) |
将式(32)代入式(31)得到
$ \begin{align} \ln (x(t))\leqslant \ln (x(0))+\left(\beta N-\mu-\gamma\right)t+M(t). \end{align} $ | (33) |
另一方面,
$ \begin{align*} \langle M, M\rangle(t)=\, &\int_0^t\int_0^{+\infty}(\ln(1+\sigma (N-x(s))z))^2\nu(\text{d} z)\text{d} s\\ \leqslant&\int_0^t\int_0^{+\infty}(\ln(1+\sigma Nz))^2\nu(\text{d} z)\text{d} s. \end{align*} $ |
令
$ \begin{align} \nonumber\int_0^{+\infty}(\ln(1+\sigma Nz))^2\nu(\text{d} z) =\,&(\sigma N)^\alpha\int_0^{+\infty}(\ln(1+y))^2\nu(\text{d} y)\\ \nonumber\leqslant&(\sigma N)^\alpha\int_0^\frac{1}{2}\frac{C_\alpha}{y^{\alpha-1}}\text{d} y\\ \nonumber=\, &\frac{(\sigma N)^\alpha C_\alpha}{(2-\alpha)2^{2-\alpha}}\\ <&+\infty. \end{align} $ | (34) |
因此
$ \begin{align*} \int_0^t\frac{\text{d} \langle M, M\rangle(s)}{(1+s)^2}\leqslant\frac{t}{1+t}\int_0^{+\infty}(\ln(1+\sigma Nz))^2\nu(\text{d} z)<+\infty. \end{align*} $ |
由引理4得到
$ \lim\limits_{t\rightarrow+\infty}\frac{M(t)}{t}=0 \ \ \text{几乎处处成立}. $ | (35) |
将式(31)两侧同时除以
$ \begin{align*} \frac{\ln x(t)}{t}\leqslant \frac{\ln(x(0))}{t}+\beta N-\mu-\gamma+\frac{M(t)}{t}. \end{align*} $ |
当
$ \limsup\limits_{t\rightarrow+\infty}\frac{\ln x(t)}{t}\leqslant \beta N-\mu-\gamma \ \ \text{几乎处处成立}. $ |
特别地, 若
$\begin{align*} \beta N-\mu-\gamma<0, \end{align*} $ |
则有
$ \lim\limits_{t\rightarrow+\infty}x(t)=0\ \ \text{几乎处处成立}. $ |
证毕.
[1] |
World Health Organization. Number of deaths due to HIV[EB/OL].[2017-08-01]. http://www.who.int/gho/hiv/epidemicstatus/deaths/en/.
|
[2] |
World Health Organization. How many TB cases and deaths are there?[EB/OL].[2017-08-01]. http://www.who.int/gho/tb/epidemic/casesdeaths/en/.
|
[3] |
KERMACK W O, MCKENDRICK A G. A contribution to the mathematical theory of epidemics[J]. Proceedings of the Royal Society of London, 1927, 115: 700-721. DOI:10.1098/rspa.1927.0118 |
[4] |
HETHCOTE H W, YORKE J A. Gonorrhea Transmission Dynamics and Control[M]. Berlin: Springer-Verlag, 1984.
|
[5] |
GRAY A, GREENHALGH D, HU L, et al. A stochastic differential equations SIS epidemic model[J]. Siam Journal on Applied Mathematics, 2011, 71(3): 876-902. |
[6] |
RICHARDSON L F. Variation of the frequency of fatal quarrels with magnitude[J]. Journal of the American Statistical Association, 1948, 43(244): 523-546. DOI:10.1080/01621459.1948.10483278 |
[7] |
BROCKMANN D, HUFNAGEL L, GEISEL T. The scaling laws of human travel[J]. Nature, 2006, 439: 462-465. DOI:10.1038/nature04292 |
[8] |
NOLAN J P. Stable Distributions-Models for Heavy Tailed Data[M]. Boston: Birkhauser, 2009.
|
[9] |
MAO X. Exponential Stability of Stochastic Differential Equations[M]. New York: Marcel Dekker, 1994.
|
[10] |
BAO J, MAO X, YIN G G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis Theory Methods and Applications, 2011, 74(17): 6601-6616. DOI:10.1016/j.na.2011.06.043 |
[11] |
APPLEBAUM D. Lévy Processes and Stochastic Calculus[M]. Cambridge: Cambridge University Press, 2009: 251.
|
[12] |
KLEBANER F C. Introduction to Stochastic Calculus with Applications[M]. 2nd ed. Melbourne: Monash University Press, 2004: 170.
|
[13] |
KHASMINSKⅡ R. Stochastic Stability of Differential Equations[M]. Berlin: Springer, 2011: 107.
|
[14] |
ZHANG Z, ZHANG X, TONG J. Exponential ergodicity for population dynamics driven by α-stable processes[J]. Statistics and Probability Letters, 2017, 125: 149-159. DOI:10.1016/j.spl.2017.02.010 |
[15] |
CHEN X, CHEN Z, TRAN K, et al. Properties of switching jump diffusions:Maximum principles and Harnack inequalities[J]. Bernoulli, preprint, 2018. |
[16] |
CHEN X S, CHEN Z Q, TRAN K, et al. Recurrence and ergodicity for a class of regime-switching jump diffusions[J]. Applied Mathematics and Optimization, 2017(6): 1-31. |
[17] |
沈燮昌. 数学分析2[M]. 北京: 高等教育出版社, 2014.
|
[18] |
MEYN S P, TWEEDIE R L. Stability of Markovian processes Ⅲ:Foster-Lyapunov criteria for continuous-time processes[J]. Advances in Applied Probability, 2010, 25(3): 518-548. |
[19] |
LIPSTER R SH. A strong law of large numbers for local martingales[J]. Stochastics, 1980, 3: 217-228. DOI:10.1080/17442508008833146 |