Review Articles

Portfolio optimisation using constrained hierarchical bayes models1

Jiangyong Yin ,

Department of Statistics, The Ohio State University, Columbus, OH, USA

Xinyi Xu

Department of Statistics, The Ohio State University, Columbus, OH, USA

Pages 112-120 | Received 20 Apr. 2017, Accepted 22 Jun. 2017, Published online: 21 Jul. 2017,
  • Abstract
  • Full Article
  • References
  • Citations

abstract

It is well known that traditional mean-variance optimal portfolio delivers rather erratic and unsatisfactory out-of-sample performance due to the neglect of estimation errors. Constrained solutions, such as no-short-sale-constrained and norm-constrained portfolios, can usually achieve much higher ex post Sharpe ratio. Bayesian methods have also been shown to be superior to traditional plug-in estimator by incorporating parameter uncertainty through prior distributions. In this paper, we develop an innovative method that induces priors directly on optimal portfolio weights and imposing constraints a priori in our hierarchical Bayes model. We show that such constructed portfolios are well diversified with superior out-of-sample performance. Our proposed model is tested on a number of Fama–French industry portfolios against the naïve diversification strategy and Chevrier and McCulloch’s (2008 Chevrier, T., & McCulloch, R. (2008). Using economic theory to build optimal portfolios (Technical report, Working paper). University of Chicago. Retrieved from http://dx.doi.org/10.2139/ssrn.1126596 [Google Scholar]) economically motivated prior (EMP) strategy. On average, our model outperforms Chevrier and McCulloch’s (2008 Chevrier, T., & McCulloch, R. (2008). Using economic theory to build optimal portfolios (Technical report, Working paper). University of Chicago. Retrieved from http://dx.doi.org/10.2139/ssrn.1126596 [Google Scholar]) EMP strategy by over 15% and outperform the ‘1/N’ strategy by over 50%.

References

  1. Avramov, D., & Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 2547[Google Scholar]
  2. Bawa, V., Brown, S., & Klein, R. (1979). Estimation risk and optimal portfolio choice (p. 190). New York: North Holland[Google Scholar]
  3. Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48, 2843[Taylor & Francis Online], [Google Scholar]
  4. Brandt, M. (2009). Portfolio choice problems. In Y. Ait-Sahalia & L. P. Hansen (Eds.), Handbook of financial econometrics: Tools and techniques (pp. 269336). Amsterdam: North-Holland[Google Scholar]
  5. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., & Loris, I. (2009). Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences, 106(30), 1226712272[Google Scholar]
  6. Butler, R. W. (1998). Generalized inverse gaussian distributions and their wishart connections. Scandinavian Journal of Statistics, 25(1), 6975[Google Scholar]
  7. Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465480[Google Scholar]
  8. Chevrier, T., & McCulloch, R. (2008). Using economic theory to build optimal portfolios (Technical report, Working paper). University of Chicago. Retrieved from http://dx.doi.org/10.2139/ssrn.1126596 [Google Scholar]
  9. Clyde, M., & George, E. I. (2004). Model uncertainty. Statistical Science, 19, 8194[Google Scholar]
  10. Cui, W., & George, E. I. (2008). Empirical Bayes vs. fully Bayes variable selection. Journal of Statistical Planning and Inference, 138, 888900[Google Scholar]
  11. DeMiguel, V., Garlappi, L., Nogales, F., & Uppal, R. (2009a). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798812[Google Scholar]
  12. DeMiguel, V., Garlappi, L., & Uppal, R. (2009b). Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? Review of Financial Studies, 22(5), 1915[Google Scholar]
  13. Frost, P.& Savarino, J. (1986). An empirical Bayes approach to efficient portfolio selection. Journal of Financial and Quantitative Analysis, 21(03), 293305[Google Scholar]
  14. Frost, P., & Savarino, J. (1988). For better performance. The Journal of Portfolio Management, 15(1), 2934[Google Scholar]
  15. Greyserman, A., Jones, D., & Strawderman, W. (2006). Portfolio selection using hierarchical Bayesian analysis and MCMC methods. Journal of Banking & Finance, 30(2), 669678[Crossref], [Web of Science ®], [Google Scholar]
  16. Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4), 16511684[Google Scholar]
  17. Kandel, S., McCulloch, R., & Stambaugh, R. (1995). Bayesian inference and portfolio efficiency. Review of Financial Studies, 8(1), 153[Google Scholar]
  18. Lamoureux, C., & Zhou, G. (1996). Temporary components of stock returns: What do the data tell us? Review of Financial Studies, 9(4), 10331059[Crossref], [Web of Science ®], [Google Scholar]
  19. Ledoit, O., & Wolf, M. (2003a). Honey, I shrunk the sample covariance matrix (UPF Economics and Business Working Paper 691). Retrieved from http://dx.doi.org/10.2139/ssrn.433840 [Google Scholar]
  20. Ledoit, O., & Wolf, M. (2003b). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603621[Google Scholar]
  21. Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g priors for bayesian variable selection. Journal of the American Statistical Association, 103(481), 410423[Taylor & Francis Online], [Google Scholar]
  22. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 7791[Google Scholar]
  23. Rodriguez-Yam, G., Davis, R., & Scharf, L. (2004). Efficient gibbs sampling of truncated multivariate normal with application to constrained linear regression. Unpublished Manuscript. [Google Scholar]
  24. Sharpe, W. (1994). The sharpe ratio. Journal of Portfolio Management, 21, 4958[Google Scholar]
  25. Strawderman, W. (1971). Proper bayes minimax estimators of the multivariate normal mean. The Annals of Mathematical Statistics, 42, 385388[Google Scholar]
  26. Tu, J., & Zhou, G. (2010). Incorporating economic objectives into Bayesian priors: Portfolio choice under parameter uncertainty. Journal of Financial and Quantitative Analysis, 45(4), 959986[Google Scholar]
  27. Yang, R., & Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. The Annals of Statistics, 22, 11951211[Google Scholar]