References
- Avramov, D., & Zhou, G. (2010). Bayesian portfolio analysis. Annual Review of Financial Economics, 2(1), 25–47. [Google Scholar]
- Bawa, V., Brown, S., & Klein, R. (1979). Estimation risk and optimal portfolio choice (p. 190). New York: North Holland. [Google Scholar]
- Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48, 28–43. [Taylor & Francis Online], [Google Scholar]
- Brandt, M. (2009). Portfolio choice problems. In Y. Ait-Sahalia & L. P. Hansen (Eds.), Handbook of financial econometrics: Tools and techniques (pp. 269–336). Amsterdam: North-Holland. [Google Scholar]
- Brodie, J., Daubechies, I., De Mol, C., Giannone, D., & Loris, I. (2009). Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Sciences, 106(30), 12267–12272. [Google Scholar]
- Butler, R. W. (1998). Generalized inverse gaussian distributions and their wishart connections. Scandinavian Journal of Statistics, 25(1), 69–75. [Google Scholar]
- Carvalho, C. M., Polson, N. G., & Scott, J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 97(2), 465–480. [Google Scholar]
- Chevrier, T., & McCulloch, R. (2008). Using economic theory to build optimal portfolios (Technical report, Working paper). University of Chicago. Retrieved from http://dx.doi.org/10.2139/ssrn.1126596 [Google Scholar]
- Clyde, M., & George, E. I. (2004). Model uncertainty. Statistical Science, 19, 81–94. [Google Scholar]
- Cui, W., & George, E. I. (2008). Empirical Bayes vs. fully Bayes variable selection. Journal of Statistical Planning and Inference, 138, 888–900. [Google Scholar]
- DeMiguel, V., Garlappi, L., Nogales, F., & Uppal, R. (2009a). A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55(5), 798–812. [Google Scholar]
- DeMiguel, V., Garlappi, L., & Uppal, R. (2009b). Optimal versus naive diversification: How inefficient is the 1/n portfolio strategy? Review of Financial Studies, 22(5), 1915. [Google Scholar]
- Frost, P.& Savarino, J. (1986). An empirical Bayes approach to efficient portfolio selection. Journal of Financial and Quantitative Analysis, 21(03), 293–305. [Google Scholar]
- Frost, P., & Savarino, J. (1988). For better performance. The Journal of Portfolio Management, 15(1), 29–34. [Google Scholar]
- Greyserman, A., Jones, D., & Strawderman, W. (2006). Portfolio selection using hierarchical Bayesian analysis and MCMC methods. Journal of Banking & Finance, 30(2), 669–678. [Crossref], [Web of Science ®], [Google Scholar]
- Jagannathan, R., & Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4), 1651–1684. [Google Scholar]
- Kandel, S., McCulloch, R., & Stambaugh, R. (1995). Bayesian inference and portfolio efficiency. Review of Financial Studies, 8(1), 1–53. [Google Scholar]
- Lamoureux, C., & Zhou, G. (1996). Temporary components of stock returns: What do the data tell us? Review of Financial Studies, 9(4), 1033–1059. [Crossref], [Web of Science ®], [Google Scholar]
- Ledoit, O., & Wolf, M. (2003a). Honey, I shrunk the sample covariance matrix (UPF Economics and Business Working Paper 691). Retrieved from http://dx.doi.org/10.2139/ssrn.433840 [Google Scholar]
- Ledoit, O., & Wolf, M. (2003b). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5), 603–621. [Google Scholar]
- Liang, F., Paulo, R., Molina, G., Clyde, M. A., & Berger, J. O. (2008). Mixtures of g priors for bayesian variable selection. Journal of the American Statistical Association, 103(481), 410–423. [Taylor & Francis Online], [Google Scholar]
- Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. [Google Scholar]
- Rodriguez-Yam, G., Davis, R., & Scharf, L. (2004). Efficient gibbs sampling of truncated multivariate normal with application to constrained linear regression. Unpublished Manuscript. [Google Scholar]
- Sharpe, W. (1994). The sharpe ratio. Journal of Portfolio Management, 21, 49–58. [Google Scholar]
- Strawderman, W. (1971). Proper bayes minimax estimators of the multivariate normal mean. The Annals of Mathematical Statistics, 42, 385–388. [Google Scholar]
- Tu, J., & Zhou, G. (2010). Incorporating economic objectives into Bayesian priors: Portfolio choice under parameter uncertainty. Journal of Financial and Quantitative Analysis, 45(4), 959–986. [Google Scholar]
- Yang, R., & Berger, J. O. (1994). Estimation of a covariance matrix using the reference prior. The Annals of Statistics, 22, 1195–1211. [Google Scholar]