References
- Fan, J., & Lv, J. (2008). Sure independent screening for ultrahigh dimensional feature space (with discussion). Journal of Royal Statistical Society, Series B, 70, 849–911. doi: 10.1111/j.1467-9868.2008.00674.x [Google Scholar]
- Fang, L., & Ni, F. (2016). Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification. Journal of Nonparametric Statistics, 28, 515–530. doi: 10.1080/10485252.2016.1167206 [Taylor & Francis Online], [Google Scholar]
- Huang, D. Y., Li, R. Z., & Wang, H. S. (2014). Feature screening for ultrahigh dimensional categorical data with applications. Journal of Business & Economic Statistics, 32, 237–244. doi: 10.1080/07350015.2013.863158 [Taylor & Francis Online], [Google Scholar]
- Lai, P., Liu, Y. M., Liu, Z., & Wan, Y. (2017). Model free feature screening for ultrahigh dimensional data with responses missing at random. Computational Statistics & Data Analysis, 105, 201–216. doi: 10.1016/j.csda.2016.08.008 [Web of Science ®], [Google Scholar]
- Ni, L., Fang, F., & Wan, F. J. (2017). Adjusted pearson chi-square feature screening for multi-classification with ultrahigh dimensional data. Metrika, 80, 805–828. doi: 10.1007/s00184-017-0629-9 [Google Scholar]
- Wang, Q. H., & Li, Y. J. (2018). How to make model-free feature screening approaches for full data applicable to the case of missing response?. Scandinavian Journal of Statistics, 45, 324–346. doi: 10.1111/sjos.12290 [Google Scholar]