References
- Ai, C., Linton, O., & Zhang, Z. (2018). A simple and efficient estimation method for models with nonignorable missing data. ArXiv preprint arXiv:1801.04202. [Google Scholar]
- Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96, 1348–1360. doi: 10.1198/016214501753382273 [Taylor & Francis Online], [Google Scholar]
- Kim, J. K., & Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association, 106, 157–165. doi: 10.1198/jasa.2011.tm10104 [Taylor & Francis Online], [Google Scholar]
- Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 1112–1121. doi: 10.1080/01621459.1995.10476615 [Taylor & Francis Online], [Google Scholar]
- Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data. 2nd ed. New York: Wiley. [Google Scholar]
- Morikawa, K., & Kim, J. K. (2016). Semiparametric adaptive estimation with nonignorable nonresponse data. ArXiv preprint arXiv:1612.09207. [Google Scholar]
- Morikawa, K., Kim, J. K., & Kano, Y. (2017). Semiparametric maximum likelihood estimation with data missing not at random. Canadian Journal of Statistics, 45, 393–409. doi: 10.1002/cjs.11340 [Google Scholar]
- Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika, 103, 175–187. doi: 10.1093/biomet/asv071 [Google Scholar]
- Troxel, A. B., Harrington, D. P., & Lipsitz, S. R. (1998). Analysis of longitudinal data with non-ignorable non-monotone missing values. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 425–438. doi: 10.1111/1467-9876.00119 [Google Scholar]
- Wang, L., Qi, C., & Shao, J. (2018). Model-assisted regression estimators for longitudinal data with nonignorable dropout. International Statistical Review, to appear. [Google Scholar]
- Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101, 1418–1429. doi: 10.1198/016214506000000735 [Taylor & Francis Online], [Google Scholar]