Review Articles

Some issues on longitudinal data with nonignorable dropout, a discussion of “Statistical Inference for Nonignorable Missing-Data Problems: A Selective Review” by Niansheng Tang and Yuanyuan Ju

Lei Wang

School of Statistics and Data Science & LPMC, Nankai University, Tianjin, People's Republic of China

Pages 137-139 | Received 07 Sep. 2018, Accepted 10 Sep. 2018, Published online: 18 Sep. 2018,
  • Abstract
  • Full Article
  • References
  • Citations

References

  1. Ai, C., Linton, O., & Zhang, Z. (2018). A simple and efficient estimation method for models with nonignorable missing data. ArXiv preprint arXiv:1801.04202. [Google Scholar]
  2. Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American statistical Association, 96, 13481360. doi: 10.1198/016214501753382273 [Taylor & Francis Online], [Google Scholar]
  3. Kim, J. K., & Yu, C. L. (2011). A semiparametric estimation of mean functionals with nonignorable missing data. Journal of the American Statistical Association, 106, 157165. doi: 10.1198/jasa.2011.tm10104 [Taylor & Francis Online], [Google Scholar]
  4. Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association, 90, 11121121. doi: 10.1080/01621459.1995.10476615 [Taylor & Francis Online], [Google Scholar]
  5. Little, R. J. A., & Rubin, D. B. (2002). Statistical Analysis with Missing Data. 2nd ed. New York: Wiley[Google Scholar]
  6. Morikawa, K., & Kim, J. K. (2016). Semiparametric adaptive estimation with nonignorable nonresponse data. ArXiv preprint arXiv:1612.09207. [Google Scholar]
  7. Morikawa, K., Kim, J. K., & Kano, Y. (2017). Semiparametric maximum likelihood estimation with data missing not at random. Canadian Journal of Statistics, 45, 393409. doi: 10.1002/cjs.11340 [Google Scholar]
  8. Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika, 103, 175187. doi: 10.1093/biomet/asv071 [Google Scholar]
  9. Troxel, A. B., Harrington, D. P., & Lipsitz, S. R. (1998). Analysis of longitudinal data with non-ignorable non-monotone missing values. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47, 425438. doi: 10.1111/1467-9876.00119 [Google Scholar]
  10. Wang, L., Qi, C., & Shao, J. (2018). Model-assisted regression estimators for longitudinal data with nonignorable dropout. International Statistical Review, to appear. [Google Scholar]
  11. Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American statistical association, 101, 14181429. doi: 10.1198/016214506000000735 [Taylor & Francis Online], [Google Scholar]