Review Articles

A discussion of ‘statistical inference for nonignorable missing data problems: a selective review’ by Niansheng Tang and Yuanyuan Ju

Kosuke Morikawa ,

Graduate School of Engineering Science, Osaka University, Osaka, Japan

Jae Kwang Kim

Department of Statistics, Iowa State University, Ames, IA, USA

Pages 140 | Received 07 Sep. 2018, Accepted 10 Sep. 2018, Published online: 26 Sep. 2018,
  • Abstract
  • Full Article
  • References
  • Citations


  1. Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. Journal of the American Statistical Association22, 300–325. [Google Scholar]
  2. Shao, J., & Wang, L. (2016). Semiparametric inverse propensity weighting for nonignorable missing data. Biometrika103, 175–187. doi: 10.1093/biomet/asv071 [Google Scholar]
  3. Zhao, H., Zhao, P. Y., & Tang, N. S. (2013). Empirical likelihood inference for mean functionals with nonignorably missing response data. Computational Statistics & Data Analysis66, 101–116. doi: 10.1016/j.csda.2013.03.023 [Google Scholar]

Zhiping Qiu, Huijuan Ma, Jianhua Shi. (2020) Reweighting estimators for the transformation models with length-biased sampling data and missing covariatesCommunications in Statistics - Theory and Methods 0:0, pages 1-24.