Review Articles

Discussion of ‘Prior-based Bayesian Information Criterion (PBIC)’

Sifan Liu ,

School of Statistics, Tianjin University Of Finance & Economics, Tianjin, 300222, China

Dongchu Sun

School of Statistics, East China Normal University, Shanghai, 200062, China; Department of Statistics, University of Missouri, Columbia, 65211, MO, USA

dcsun@sfs.ecnu.edu.cn,sund@missouri.edu

Pages 24-25 | Received 04 Apr. 2019, Accepted 22 Apr. 2019, Published online: 14 May. 2019,
  • Abstract
  • Full Article
  • References
  • Citations

References

  1. Baker, M. (2016). Statisticians issue warning on P values. Nature531, 151. doi: 10.1038/nature.2016.19503 [Crossref][Web of Science ®], [Google Scholar]
  2. Bayarri, M. J., Berger, J. O., Forte, A., & García-Donato, G. (2012). Criteria for Bayesian model choice with application to variable selection. The Annals of Statistics40, 1550–1577. doi: 10.1214/12-AOS1013 [Crossref][Web of Science ®], [Google Scholar]
  3. Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E., Berk, R., …Johnson, V. E. (2017). Redefine statistical significance. Nature Human Behaviour2, 6–10. doi: 10.1038/s41562-017-0189-z [Crossref][Web of Science ®], [Google Scholar]
  4. Chawla, D. S. (2017). Big names in statistics want to shake up much-maligned P value. Nature548, 16–17. doi: 10.1038/nature.2017.22375 [Crossref][Web of Science ®], [Google Scholar]
  5. Giraud, C. (2015). Introduction to high-dimensional statistics. Chapman & Hall, CRC. [Google Scholar]
  6. Jeffreys, W. H. (1961). Theory of probability (3rd ed.). Oxford, UK: Clarendon Press. [Google Scholar]
  7. Lavine, M., & Schervish, M. J. (1999). Bayes factors: What they are and what they are not. The American Statistician53, 119–122. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  8. Marden, J. I. (2000). Hypothesis testing: From p values to Bayes factors. Journal of the American Statistical Association95, 1316–1320. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  9. Nuzzo, R. (2014). Scientific method: Statistical errors. Nature506, 150–152. doi: 10.1038/506150a [Crossref][Web of Science ®], [Google Scholar]
  10. Wasserstein, R. L., & Lazar, N. A. (2016). The ASA's statement on p-values: Pontext, process, and purpose. The American Statistician70, 129–133. doi: 10.1080/00031305.2016.1154108 [Taylor & Francis Online][Web of Science ®], [Google Scholar]