Review Articles

Generalised variance functions for longitudinal survey data

Guoyi Zhang ,

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA

Yang Cheng ,

Substance Abuse and Mental Health Administration, Rockville, MD, USA

Yan Lu

Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM, USA

Pages 150-157 | Received 02 Nov. 2018, Accepted 03 Sep. 2019, Published online: 13 Sep. 2019,
  • Abstract
  • Full Article
  • References
  • Citations


In this research, we propose longitudinal generalised variance functions (LGVFs) to produce convenient estimates of variances by incorporating time effect into modelling. Asymptotic properties of some certain type of estimators are investigated. Simulation studies and implementation of the proposed methods to Current Population Survey (CPS) data show that LGVFs work well in producing standard error estimates.


  1. Burdick, R. K., & Sielken Jr., R. L. (1979). Variance estimation based on a superpopulation model in two-stage sampling. Journal of the American Statistical Association74, 438–440. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  2. Burt, V., & Cohen, S. B. (1984). A comparison of methods to approximate standard errors for complex survey data. Review of Public Data Use12, 159–168. [Google Scholar]
  3. Cohen, S. B. (1979). An assessment of curve smoothing strategies which yield variance estimates from complex survey. Proceedings of the Survey Research Methods Section of the American Statistical Association, Washington, DC. [Google Scholar]
  4. Cook, D. G., & Pocock, S. J. (1983). Multiple regression in geo-graphical mortality studies with allowance for spatially correlated errors. Biometrics39, 361–371. doi: 10.2307/2531009 [Crossref][Web of Science ®], [Google Scholar]
  5. Johnson, E. G., & King, B. F. (1987). Generalized variance functions for a complex sample survey. Journal of Official Statistics3, 235–250. [Google Scholar]
  6. Lohr, S. (2010). Sampling: Design and analysis (2nd ed.). Boston, MA: Cengage Learning. [Google Scholar]
  7. Rao, J. N. K. (1988). Variance estimation in sample surveys. In P. R. Krishnaiah & C. R. Rao (Eds.), Handbook of statistics (Vol. 6, pp. 427–447). Amsterdam: Elsevier Science Publishers B.V. [Crossref], [Google Scholar]
  8. Rao, J. N. K., & Wu, C. F. J. (1988). Resampling inference with complex survey data. Journal of the American Statistical Association83, 231–241. doi: 10.1080/01621459.1988.10478591 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  9. Royall, R. M. (1976). The linear least squares prediction approach to two-stage sampling. Journal of the American Statistical Association71, 657–664. doi: 10.1080/01621459.1976.10481542 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  10. Royall, R. M. (1986). The prediction approach to robust variance estimation in two-stage cluster sampling. Journal of the American Statistical Association81, 119–123. doi: 10.1080/01621459.1986.10478247 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  11. Scott, A. J., & Smith, T. M. F. (1969). Estimation in multi-stage surveys. Journal of the American Statistical Association64, 830–840. doi: 10.1080/01621459.1969.10501015 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  12. Shook-Sa, B., Heller, D., Williams, R., Couzens, G. L., & Berzofsky, M. (2013). Comparing generalized variance functions to direct variance estimation for the national crime victimization survey. 2013 research conference, Federal Committee on Statistical Methodology (FCSM), Washington, DC. [Google Scholar]
  13. Thompson, M. E. (2015). Using longitudinal complex survey data. The Annual Review of Statistics and Its Application2, 305–320. doi: 10.1146/annurev-statistics-010814-020403 [Crossref][Web of Science ®], [Google Scholar]
  14. U.S. Census Bureau. (2006). Current population survey: Design and methodology (Technical Paper 66). [Google Scholar]
  15. U.S. Census Bureau. (2009). Estimating ASEC variances with replicate weights. Part 1: Instructions for using the ASEC public use replicate weight file to create ASEC variance estimates. [Google Scholar]
  16. Valliant, R. L. (1987). Generalized variance functions in stratified two-stage sampling. Journal of the American Statistical Association82, 499–508. doi: 10.1080/01621459.1987.10478454 [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  17. Wolter, K. M. (2007). Introduction to variance estimation (2nd ed.). New York, NY: Spring-Verlag. [Google Scholar]