Review Articles

Review of sparse sufficient dimension reduction: comment

Liping Zhu

Institute of Statistics and Big Data, Renmin University of China, Beijing, People's Republic of China

Pages 134 | Received 17 Sep. 2020, Accepted 23 Sep. 2020, Published online: 12 Oct. 2020,
  • Abstract
  • Full Article
  • References
  • Citations


  1. Li, L., Wen, X. M., & Yu, Z. (2020). Review of sparse sufficient dimension reduction. Statistical Theory and Related Fields. [Google Scholar]
  2. Lin, Q., Zhao, Z., & Liu, J. (2019). Sparse sliced inverse regression via Lasso. Journal of the American Statistical Association114(528), 1726–1739. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  3. Tan, K., Shi, L., & Yu, Z. (2020). Sparse SIR: Optimal rates and adaptive estimation. The Annals of Statistics48(1), 64–85. [Crossref], [Google Scholar]
  4. Yu, Z., Dong, Y., & Zhu, L. X. (2016). Trace pursuit: A general framework for model-free variable selection. Journal of the American Statistical Association111(514), 813–821. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  5. Yu, Z., Dong, Y., & Shao, J. (2016). On marginal sliced inverse regression for ultrahigh dimensional model-free feature selection. The Annals of Statistics44(6), 2594–2623. [Crossref][Web of Science ®], [Google Scholar]
  6. Zhu, L. P., Li, L., Li, R., & Zhu, L. X. (2011). Model-free feature screening for ultrahigh-dimensional data. Journal of the American Statistical Association106(496), 1464–1475. [Taylor & Francis Online][Web of Science ®], [Google Scholar]