Review Articles

Modified non-sequential third order rotatable designs constructed using Pairwise Balanced Design

Haron Mutai Ng’eno

Department of Statistics and Computer Science, Moi University, Eldoret, Kenya

Pages 83-87 | Received 15 Nov. 2018, Accepted 25 May. 2020, Published online: 04 Jun. 2020,
  • Abstract
  • Full Article
  • References
  • Citations


The technique of fitting a response surface design is useful in modelling of experimental designs. Response surface is used in situations where the response of interest is influenced by several experimental variables. The objective of fitting a response surface design is to reduce cost of experimentation and to obtain optimal designs. The property of rotatability is a desirable quantity of experimental design and requires the variance of the fitted design to be constant on circles or spheres about the centre of the design. In this article, a construction technique of fitting modified non-sequential third order rotatable design (TORD) using Pairwise Balanced Design (PBD) is presented. The variance function of a third order response surface design and the properties of Pairwise Balanced Design are utilised for the construction.


  1. Box, G. E. P., & Hunter, J. S. (1957). Multifactor experimental designs for exploring response surfaces. Annals of Mathematical Statistics28(1), 195–241. [Crossref], [Google Scholar]
  2. Das, M. N., & Narasimham, V. L. (1962). Constructruction of rotatable design through Balanced Incomplete Block designs. Annals of Mathematical Statistics33(4), 1421–1439. [Crossref], [Google Scholar]
  3. Gardiner, D. A., Grandage, A. H. E., & Hader, R. J. (1959). Third order rotatable designs for exploring response surface. Annals of Mathematical Statistics30(4), 1082–1096. [Crossref], [Google Scholar]
  4. Hader, R. J., & Park, S. H. (1978). Slope rotatable central composite designs. Technometrics20(4), 413–417. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  5. Kosgei, M. K., Koske, J. K., & Mutiso, J. M. (2013). Construction of five level modified third order rotatable design using a pair of balanced incomplete block designs. Indian Journal of Computational Inteligence and System Sciences1, 10–18. [Google Scholar]
  6. Park, S. H. (1987). A class of multifactor designs for estimating the slope of response surface. Technometrics29(4), 449–453. [Taylor & Francis Online][Web of Science ®], [Google Scholar]
  7. Victorbabu, B. R. (2011). A new method of construction of second order slope rotatable designs using incomplete block designs with unequal block sizes. Probstat Forum4, 44–53. [Google Scholar]
  8. Victorbabu, B. R., & Narasimham, V. L. (1991). Construction of second order slope rotatable designs through balanced incomplete block designs. Communications in Statistics- Theory and Methods20(8), 2467–2478. [Taylor & Francis Online][Web of Science ®], [Google Scholar]