Review Articles

Exponential tilted likelihood for stationary time series models

Xiuzhen Zhang ,

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, School of Statistics, East China Normal University, Shanghai, People’s Republic of China; School of Mathematics and Statistics, Shanxi Datong University, Datong, People’s Republic of China

Yukun Liu ,

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, School of Statistics, East China Normal University, Shanghai, People’s Republic of China

Riquan Zhang ,

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, School of Statistics, East China Normal University, Shanghai, People’s Republic of China

Zhiping Lu

Key Laboratory of Advanced Theory and Application in Statistics and Data Science, MOE, School of Statistics, East China Normal University, Shanghai, People’s Republic of China

Pages 0 | Received 21 Mar. 2021, Accepted 02 Sep. 2021, Published online: 23 Sep. 2021,
  • Abstract
  • Full Article
  • References
  • Citations

Depending on the asymptotical independence of periodograms, exponential tilted (ET) likelihood, as an effective nonparametric statistical method, is developed to deal with time seriesin this paper. Similar to empirical likelihood (EL), it still suffers from two drawbacks: the nondefinition problem of the likelihood function and the under-coverage probability of confidenceregion. To overcome these two problems, we further proposed the adjusted ET (AET) likelihood.With a specific adjustment level, our simulation studies indicate that the AET method achieves a higher-order coverage precision than the unadjusted ET method. In addition, due to the good performance of ET under moment model misspecification [Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. The Annals of Statistics, 35(2), 634–672.https://doi.org/10.1214/009053606000001208], we show that the one-order property of point estimate is preserved for the misspecified spectral estimating equations of the autoregressive coefficient of AR(1). The simulation results illustrate that the point estimates of the ET outperform those of the EL and their hybrid in terms of standard deviation. A real data set is analyzed for illustration purpose

References

  • Brillinger, D. R. (1981). Time series: Data analysis and theory. Holden-Day.
  • Caner, M. (2010). Exponential tilting with weak instruments: Estimation and testing. Oxford Bulletin of Economics and Statistics, 72(3), 307325. https://doi.org/10.1111/obes.2010.72.issue-3
  • Chan, N. H., & Liu, L. (2010). Bartlett correctability of empirical likelihood in time series. Journal of the Japan Statistical Society, 40(2), 221238. https://doi.org/10.14490/jjss.40.221
  • Chen, J. H., Variyath, A. M., & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17(2), 426443. https://doi.org/10.1198/106186008X321068
  • DiCiccio, T., Hall, P., & Romano, J. (1991). Empirical likelihood is Bartlett correctable. The Annals of Statistics, 19(2), 10531061. https://doi.org/10.1214/aos/1176348137
  • Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 1529. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
  • Han, Y., & Zhang, C. M. (2021). Empirical likelihood inference in autoregressive models with time-varying variances. Statistical Theory and Related Fields. https://doi.org/10.1080/24754269.2021.1913977
  • Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165176. https://doi.org/10.1093/biomet/68.1.165
  • Imbens, G. W. (2002). Generalized method of moments and empirical likelihood. Journal of Business and Economic Statistics, 20(4), 493506. https://doi.org/10.1198/073500102288618630
  • Imbens, G. W., Spady, R. H., & Johnson, P. (1998). Information-theoretic approaches to inference in moment condition models. Econometrica, 66(2), 333357. https://doi.org/10.2307/2998561
  • Jing, B. Y., & Andrew, T. A. (1996). Exponential empirical likelihood is not Bartlett correctable. The Annals of Statistics, 24(1), 365369. https://doi.org/10.1214/aos/1033066214
  • Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. The Annals of Statistics, 25(5), 20842102. https://doi.org/10.1214/aos/1069362388
  • Kitamura, Y. (2000). Comparing misspecified dynamic econometric models using nonparametric likelihood. Department of Economics, University of Wisconsin.
  • Kitamura, Y., & Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica, 65(4), 861874. https://doi.org/10.2307/2171942
  • Liu, Y. K., & Chen, J. H. (2010). Adjusted empirical likelihood with high-order precision. The Annals of Statistics, 38(3), 13411362. https://doi.org/10.1214/09-aos750
  • Monti, A. C. (1997). Empirical likelihood confidence regions in time series models. Biometrika, 84(2), 395405. https://doi.org/10.1093/biomet/84.2.395
  • Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing (4th ed.). North-Holland, pp. 21112245.
  • Newey, W. K., & Smith, R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica, 72(1), 219255. https://doi.org/10.1111/ecta.2004.72.issue-1
  • Nordman, D. J., & Lahiri, S. N. (2006). A frequency domain empirical likelihood for short- and long-range dependence. The Annals of Statistics, 34(6), 30193050. https://doi.org/10.1214/009053606000000902
  • Nordman, D. J., & Lahiri, S. N. (2014). A review of empirical likelihood methods for time series. Journal of Statistical Planning and Inference, 155, 118. https://doi.org/10.1016/j.jspi.2013.10.001
  • Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75(2), 237249. https://doi.org/10.1093/biomet/75.2.237
  • Owen, A. B. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 18(1), 90120. https://doi.org/10.1214/aos/1176347494
  • Owen, A. B. (2001). Empirical likelihood. Chapman & Hall.
  • R. D. Piyadi Gamage, Ning, W., & Gupta, A. K. (2017a). Adjusted empirical likelihood for long-memory time series models. Journal of Statistical Theory and Practice, 11(1), 220233. https://doi.org/10.1080/15598608.2016.1271373
  • Piyadi Gamage, R. D., Ning, W., & Gupta, A. K. (2017b). Adjusted empirical likelihood for time series models. Sankhya series B, 79(2), 336360. https://doi.org/10.1007/s13571-017-0137-y
  • Schennach, S. M. (2005). Bayesian exponentially tilted empirical likelihood. Biometrika, 92(1), 3146. https://doi.org/10.1093/biomet/92.1.31
  • Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. The Annals of Statistics, 35(2), 634672. https://doi.org/10.1214/009053606000001208
  • Tang, N. S., Yan, X. D., & Zhao, P. Y. (2018). Exponentially tilted likelihood inference on growing dimensional unconditional moment models. Journal of Econometrics, 202(1), 5774. https://doi.org/10.1016/j.jeconom.2017.08.018
  • Whittle, P. (1953). Estimation and information in stationary time series. Arkiv för Matematik, 2(5), 423434. https://doi.org/10.1007/BF02590998
  • Yau, C. Y. (2012). Empirical likelihood in long-memory time series models. Journal of Time Series Analysis, 33(2), 269275. https://doi.org/10.1111/jtsa.2012.33.issue-2
  • Zhu, H., Zhou, H., Chen, J., Li, Y., Lieberman, J., & Styner, M. (2009). Adjusted exponentially tilted likelihood with applications to brain morphology. Biometrics, 65(3), 919927. https://doi.org/10.1111/j.1541-0420.2008.01124.x

To cite this article: Xiuzhen Zhang, Yukun Liu, Riquan Zhang & Zhiping Lu (2021): Exponential
tilted likelihood for stationary time series models, Statistical Theory and Related Fields, DOI:
10.1080/24754269.2021.1978207
To link to this article: https://doi.org/10.1080/24754269.2021.1978207