References
- Brillinger, D. R. (1981). Time series: Data analysis and theory. Holden-Day.
- Caner, M. (2010). Exponential tilting with weak instruments: Estimation and testing. Oxford Bulletin of Economics and Statistics, 72(3), 307–325. https://doi.org/10.1111/obes.2010.72.issue-3
- Chan, N. H., & Liu, L. (2010). Bartlett correctability of empirical likelihood in time series. Journal of the Japan Statistical Society, 40(2), 221–238. https://doi.org/10.14490/jjss.40.221
- Chen, J. H., Variyath, A. M., & Abraham, B. (2008). Adjusted empirical likelihood and its properties. Journal of Computational and Graphical Statistics, 17(2), 426–443. https://doi.org/10.1198/106186008X321068
- DiCiccio, T., Hall, P., & Romano, J. (1991). Empirical likelihood is Bartlett correctable. The Annals of Statistics, 19(2), 1053–1061. https://doi.org/10.1214/aos/1176348137
- Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
- Han, Y., & Zhang, C. M. (2021). Empirical likelihood inference in autoregressive models with time-varying variances. Statistical Theory and Related Fields. https://doi.org/10.1080/24754269.2021.1913977
- Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
- Imbens, G. W. (2002). Generalized method of moments and empirical likelihood. Journal of Business and Economic Statistics, 20(4), 493–506. https://doi.org/10.1198/073500102288618630
- Imbens, G. W., Spady, R. H., & Johnson, P. (1998). Information-theoretic approaches to inference in moment condition models. Econometrica, 66(2), 333–357. https://doi.org/10.2307/2998561
- Jing, B. Y., & Andrew, T. A. (1996). Exponential empirical likelihood is not Bartlett correctable. The Annals of Statistics, 24(1), 365–369. https://doi.org/10.1214/aos/1033066214
- Kitamura, Y. (1997). Empirical likelihood methods with weakly dependent processes. The Annals of Statistics, 25(5), 2084–2102. https://doi.org/10.1214/aos/1069362388
- Kitamura, Y. (2000). Comparing misspecified dynamic econometric models using nonparametric likelihood. Department of Economics, University of Wisconsin.
- Kitamura, Y., & Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica, 65(4), 861–874. https://doi.org/10.2307/2171942
- Liu, Y. K., & Chen, J. H. (2010). Adjusted empirical likelihood with high-order precision. The Annals of Statistics, 38(3), 1341–1362. https://doi.org/10.1214/09-aos750
- Monti, A. C. (1997). Empirical likelihood confidence regions in time series models. Biometrika, 84(2), 395–405. https://doi.org/10.1093/biomet/84.2.395
- Newey, W. K., & McFadden, D. (1994). Large sample estimation and hypothesis testing (4th ed.). North-Holland, pp. 2111–2245.
- Newey, W. K., & Smith, R. J. (2004). Higher order properties of GMM and generalized empirical likelihood estimators. Econometrica, 72(1), 219–255. https://doi.org/10.1111/ecta.2004.72.issue-1
- Nordman, D. J., & Lahiri, S. N. (2006). A frequency domain empirical likelihood for short- and long-range dependence. The Annals of Statistics, 34(6), 3019–3050. https://doi.org/10.1214/009053606000000902
- Nordman, D. J., & Lahiri, S. N. (2014). A review of empirical likelihood methods for time series. Journal of Statistical Planning and Inference, 155, 1–18. https://doi.org/10.1016/j.jspi.2013.10.001
- Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika, 75(2), 237–249. https://doi.org/10.1093/biomet/75.2.237
- Owen, A. B. (1990). Empirical likelihood ratio confidence regions. The Annals of Statistics, 18(1), 90–120. https://doi.org/10.1214/aos/1176347494
- Owen, A. B. (2001). Empirical likelihood. Chapman & Hall.
- R. D. Piyadi Gamage, Ning, W., & Gupta, A. K. (2017a). Adjusted empirical likelihood for long-memory time series models. Journal of Statistical Theory and Practice, 11(1), 220–233. https://doi.org/10.1080/15598608.2016.1271373
- Piyadi Gamage, R. D., Ning, W., & Gupta, A. K. (2017b). Adjusted empirical likelihood for time series models. Sankhya series B, 79(2), 336–360. https://doi.org/10.1007/s13571-017-0137-y
- Schennach, S. M. (2005). Bayesian exponentially tilted empirical likelihood. Biometrika, 92(1), 31–46. https://doi.org/10.1093/biomet/92.1.31
- Schennach, S. M. (2007). Point estimation with exponentially tilted empirical likelihood. The Annals of Statistics, 35(2), 634–672. https://doi.org/10.1214/009053606000001208
- Tang, N. S., Yan, X. D., & Zhao, P. Y. (2018). Exponentially tilted likelihood inference on growing dimensional unconditional moment models. Journal of Econometrics, 202(1), 57–74. https://doi.org/10.1016/j.jeconom.2017.08.018
- Whittle, P. (1953). Estimation and information in stationary time series. Arkiv för Matematik, 2(5), 423–434. https://doi.org/10.1007/BF02590998
- Yau, C. Y. (2012). Empirical likelihood in long-memory time series models. Journal of Time Series Analysis, 33(2), 269–275. https://doi.org/10.1111/jtsa.2012.33.issue-2
- Zhu, H., Zhou, H., Chen, J., Li, Y., Lieberman, J., & Styner, M. (2009). Adjusted exponentially tilted likelihood with applications to brain morphology. Biometrics, 65(3), 919–927. https://doi.org/10.1111/j.1541-0420.2008.01124.x