References
- Barron, A., Schervish, M. J., & Wasserman, L. (1999). The consistency of posterior distributions in nonparametric problems. The Annals of Statistics, 27(2), 536–561. https://doi.org/10.1214/aos/1018031206 [Crossref], [Web of Science ®], [Google Scholar]
- Castillo, I., & van der Vaart, A. (2012). Needles and straw in a haystack: Posterior concentration for possibly sparse sequences. The Annals of Statistics, 40(4), 2069–2101. https://doi.org/10.1214/12-AOS1029 [Crossref], [Web of Science ®], [Google Scholar]
- Chaudhary, S., Madhukrishna, B., Adhya, A., Keshari, S., & Mishra, S. (2016). Overexpression of caspase 7 is ERα dependent to affect proliferation and cell growth in breast cancer cells by targeting p21Cip. Oncogenesis, 5(4), e219. https://doi.org/10.1038/oncsis.2016.12 [Crossref], [Google Scholar]
- Chen, M., Gao, C., & Zhao, H. (2016). Posterior contraction rates of the phylogenetic Indian buffet processes. Bayesian Analysis, 11(2), 477–497. https://doi.org/10.1214/15-BA958 [Crossref], [Web of Science ®], [Google Scholar]
- Chu, W., Ghahramani, Z., Krause, R., & Wild, D. L. (2006). Identifying protein complexes in high-throughput protein interaction screens using an infinite latent feature model. In Proceedings of the pacific symposium in biocomputing (Vol. 11, pp. 231–242). World Scientific Press. [Google Scholar]
- Clatot, F., Augusto, L., & Di Fiore, F. (2017). ESR1 mutations in breast cancer. Aging (Albany NY), 9(1), 3. https://doi.org/10.18632/aging.v9i1 [Crossref], [Google Scholar]
- Cochrane, D. R., Bernales, S., Jacobsen, B. M., Cittelly, D. M., Howe, E. N., D'Amato, N. C., Spoelstra, N. S., Edgerton, S. M., Jean, A., Guerrero, J., Gómez, F., Medicherla, S., Alfaro, I. E., McCullagh, E., Jedlicka, P., Torkko, K. C., Thor, A. D., Elias, A. D., Protter, A. A., & J. K. Richer (2014). Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Research, 16(1), R7. https://doi.org/10.1186/bcr3599 [Crossref], [Web of Science ®], [Google Scholar]
- Dawson, S.-J., Makretsov, N., Blows, F., Driver, K., Provenzano, E., J. Le Quesne, Baglietto, L., Severi, G., Giles, G., McLean, C., Callagy, G., A. R. Green, Ellis, I., Gelmon, K., Turashvili, G., Leung, S., Aparicio, S., Huntsman, D., Caldas, C., & Pharoah, P. (2010). BCL2 in breast cancer: A favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received. British Journal of Cancer, 103(5), 668–675. https://doi.org/10.1038/sj.bjc.6605736 [Crossref], [Web of Science ®], [Google Scholar]
- Furlan, A., Vercamer, C., Bouali, F., Damour, I., Chotteau-Lelievre, A., Wernert, N., Desbiens, X., & Pourtier, A. (2014). ETS-1 controls breast cancer cell balance between invasion and growth. International Journal of Cancer, 135(10), 2317–2328. https://doi.org/10.1002/ijc.28881 [Crossref], [Web of Science ®], [Google Scholar]
- Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In Proceedings of the 23rd symposium on the interface computing science and statistics (pp. 156–163). Interface Foundation of North America. [Google Scholar]
- Ghosal, S., Ghosh, J. K., & Van Der Vaart, A. W. (2000). Convergence rates of posterior distributions. Annals of Statistics, 28(2), 500–531. https://doi.org/10.1214/aos/1016218228 [Crossref], [Web of Science ®], [Google Scholar]
- Griffiths, T. L., & Ghahramani, Z. (2006). Infinite latent feature models and the Indian buffet process. In Advances in neural information processing systems (pp. 475–482). MIT Press. [Google Scholar]
- Griffiths, T. L., & Ghahramani, Z. (2011, April). The Indian buffet process: An introduction and review. Journal of Machine Learning Research, 12(32), 1185–1224. [Google Scholar]
- Ishwaran, H., & James, L. F. (2001). Gibbs sampling methods for stick-breaking priors. Journal of the American Statistical Association, 96(453), 161–173. https://doi.org/10.1198/016214501750332758 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Ju, X., Katiyar, S., Wang, C., Liu, M., Jiao, X., Li, S., Zhou, J., Turner, J., Lisanti, M. P., Russell, R. G., Mueller, S. C., Ojeifo, J., Chen, W. S., Hay, N., & Pestell, R. G. (2007). AKT1 governs breast cancer progression in vivo. Proceedings of the National Academy of Sciences, 104(18), 7438–7443. https://doi.org/10.1073/pnas.0605874104 [Crossref], [Web of Science ®], [Google Scholar]
- Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27 [Crossref], [Web of Science ®], [Google Scholar]
- Knowles, D., & Ghahramani, Z. (2011). Nonparametric bayesian sparse factor models with application to gene expression modeling. The Annals of Applied Statistics, 5(2B), 1534–1552. https://doi.org/10.1214/10-AOAS435 [Crossref], [Web of Science ®], [Google Scholar]
- Menendez, J., & Lupu, R. (2017). Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis, 6(2), e299. https://doi.org/10.1038/oncsis.2017.4 [Crossref], [Google Scholar]
- Miller, K. T., Griffiths, T. L., & Jordan, M. I. (2008). The phylogenetic Indian buffet process: A non-exchangeable nonparametric prior for latent features. In Proceedings of the 24th conference in uncertainty in artificial intelligence (pp. 403–410). AUAI (Association for Uncertainty in Artificial Intelligence) Press. [Google Scholar]
- Pati, D., Bhattacharya, A., Pillai, N. S., & Dunson, D. (2014). Posterior contraction in sparse Bayesian factor models for massive covariance matrices. The Annals of Statistics, 42(3), 1102–1130. https://doi.org/10.1214/14-AOS1215 [Crossref], [Web of Science ®], [Google Scholar]
- Schwartz, L. (1965). On Bayes procedures. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 4(1), 10–26. https://doi.org/10.1007/BF00535479 [Crossref], [Google Scholar]
- Sheehan, K. M., Calvert, V. S., Kay, E. W., Lu, Y., Fishman, D., Espina, V., Aquino, J., Speer, R., Araujo, R., Mills, G. B., Liotta, L. A., E. F. Petricoin III, & Wulfkuhle, J. D. (2005). Use of reverse phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Molecular & Cellular Proteomics, 4(4), 346–355. https://doi.org/10.1074/mcp.T500003-MCP200 [Crossref], [Web of Science ®], [Google Scholar]
- Spurrier, B., Ramalingam, S., & Nishizuka, S. (2008). Reverse-phase protein lysate microarrays for cell signaling analysis. Nature Protocols, 3(11), 1796–1808. https://doi.org/10.1038/nprot.2008.179 [Crossref], [Web of Science ®], [Google Scholar]
- Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences, 102(43), 15545–15550. https://doi.org/10.1073/pnas.0506580102 [Crossref], [Web of Science ®], [Google Scholar]
- Takaku, M., Grimm, S. A., & Wade, P. A. (2015). GATA3 in breast cancer: Tumor suppressor or oncogene? Gene Expression, 16(4), 163–168. https://doi.org/10.3727/105221615X14399878166113 [Crossref], [Web of Science ®], [Google Scholar]
- Tormo, E., Adam-Artigues, A., Ballester, S., Pineda, B., Zazo, S., González-Alonso, P., Albanell, J., Rovira, A., Rojo, F., Lluch, A., & Eroles, P. (2017). The role of miR-26a and miR-30b in HER2+ breast cancer trastuzumab resistance and regulation of the CCNE2 gene. Scientific Reports, 7(1), Article ID 41309. https://doi.org/10.1038/srep41309 [Crossref], [Google Scholar]
- Wei, L., Jin, Z., Yang, S., Xu, Y., Zhu, Y., & Ji, Y. (2017). TCGA-assembler 2: Software pipeline for retrieval and processing of TCGA/CPTAC data. Bioinformatics, 34(9), 1615–1617. https://doi.org/10.1093/bioinformatics/btx812 [Crossref], [Web of Science ®], [Google Scholar]
- West, M. (2003). Bayesian factor regression models in the “large p, small n” paradigm. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D.Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics 7 (pp. 733–742). Oxford University Press. [Google Scholar]
- Zhang, J., Grubor, V., Love, C. L., Banerjee, A., Richards, K. L., Mieczkowski, P. A., Dunphy, C., Choi, W., Au, W. Y., Srivastava, G., Lugar, P. L., Rizzieri, D. A., Lagoo, A. S., Bernal-Mizrachi, L., Mann, K. P., Flowers, C., Naresh, K., Evens, A., Gordon, L. I., …Dave, S. S. (2013). Genetic heterogeneity of diffuse large b-cell lymphoma. Proceedings of the National Academy of Sciences, 110(4), 1398–1403. https://doi.org/10.1073/pnas.1205299110 [Crossref], [Web of Science ®], [Google Scholar]