Review Articles

Asymptotic properties of a nonparametric conditional density estimator in the local linear estimation for functional data via a functional single-index model

Fadila Benaissa ,

University Oran 1 Ahmed Ben Bella Oran, Oran, Algeria

Abdelmalek Gagui ,

Laboratory of Statistics and Stochastic Processes, Djillali Liabes University, Sidi Bel Abbes, Algeria

Abdelhak Chouaf

Laboratory of Statistics and Stochastic Processes, Djillali Liabes University, Sidi Bel Abbes, Algeria

Pages | Received 22 Nov. 2020, Accepted 05 Jul. 2021, Published online: 02 Sep. 2021,
  • Abstract
  • Full Article
  • References
  • Citations

This paper deals with the conditional density estimator of a real response variable given a

functional random variable (i.e., takes values in an infinite-dimensional space). Specifically, we focus on the functional index model, this approach represents a good compromise between nonparametric and parametric models. Then we give under general conditions and when the variables are independent, the quadratic error and asymptotic normality of estimator by local linear method, based on the single-index structure. Finally, we complete these theoretical advances by some simulation studies showing both the practical result of the local linear method and the good behaviour for finite sample sizes of the estimator and of the Monte Carlo methods to create functional pseudo-confidence area.

References

  • Ait Saidi, A., Ferraty, F., Kassa, P., & Vieu, P. (2008). Cross-validated estimations in the single functional index model. Statistics, 42(6), 475494. https://doi.org/10.1080/02331880801980377
  • Attaoui, S. (2014). Strong uniform consistency rates and asymptotic normality of conditional density estimator in the single functional index modeling for time series data. AStA Advances in Statistical Analysis., 98(3), 257286. https://doi.org/10.1007/s10182-014-0227-3
  • Attaoui, S., Laksaci, A., & Ould Said, F. (2011). A note on the conditional density estimate in the single functional index model. Statistics & Probability Letters, 81(1), 4553. https://doi.org/10.1016/j.spl.2010.09.017
  • Attaoui, S., & Ling, N. (2016). Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications. Metrika, 79(3), 485511. https://doi.org/10.1007/s00184-015-0564-6
  • Baìllo, A., & Grané, A. (2009). Local linear regression for functional predictor and scalar response. Journal of Multivariate Analysis, 100(1), 102111. https://doi.org/10.1016/j.jmva.2008.03.008
  • Barrientos-Marin, J., Ferraty, F., & Vieu, P. (2010). Locally modelled regression and functional data. Journal of Nonparametric Statistics, 22(5), 617632. https://doi.org/10.1080/10485250903089930
  • Bosq, D., & Lecoutre, J. P. (1987). Théorie de l'estimation fonctionnelle. Ed. Economica.
  • Demongeot, J., Laksaci, A., Madani, F., & Rachdi, M. (2013). Functional data: local linear estimation of the conditional density and its application. Statistics: A Journal of Theoretical and Applied Statistics., 76(2), 328355. https://doi.org/10.1080/02331888.2011.568117
  • Demongeot, J., Laksaci, A., Rachdi, M., & Rahmani, S. (2014). On the local linear modelization of the conditional distribution for functional data. Sankhya: The Indian Journal of Statistics., 76(2), 328355. https://doi.org/10.1007/s13171-013-0050-z
  • Ferraty, F., Laksaci, A., Tadj, A., & Vieu, P. (2010). Rate of uniform consistency for nonparametric estimates with functional variables. Journal of Statistical Planning and Inference, 140(2), 335352. https://doi.org/10.1016/j.jspi.2009.07.019
  • Ferraty, F, Laksaci, A, & Vieu, P. (2006). Estimating some characteristics of the conditional distribution in nonparametric functional model. Statistical Inference for Stochastic Processes , 9(1), 4776. https://doi.org/10.1007/s.11203-004-3561-3
  • Ferraty, F., Mas, A., Vieu, P., & Vieu, P. (2007). Advances in nonparametric regression for functional variables. Australian & New Zealand Journal of Statistics, 49(1), 120. https://doi.org/10.1111/j.1467-842X.2006.00454.x
  • Ferraty, F., Peuch, A., & Vieu, P. (2003). Modéle à indice fonctionnel simple. Comptes Rendus Mathématique de l'Académie des Sciences Paris, 336(12), 10251028. https://doi.org/10.1016/S1631-073X(03)00239-5(in French)
  • Ferraty, F., & Vieu, P. (2006). Nonparametric functional data analysis. Theory and Practice. Springer Series in Statistics.
  • Laksaci, A. (2007). Convergence en moyenne quadratique de l'estimateur a noyau de la densité conditionnelle avec variable explicative fonctionnelle. Publications de l'Institut de statistique de l'Université de Paris, 51(3), 6980.
  • Laksaci, A., Rachdi, M., & Rahmani, S. (2013). Spatial modelization: local linear estimation of the conditional distribution for functional data. Spatial Statistics, 6(4), 123. https://doi.org/10.1016/j.spasta.2013.04.004
  • Masry, E. (2005). Nonparametric regression estimation for dependent functional data: asymptotic normality. Stochastic Processes and their Applications, 115(1), 155177. https://doi.org/10.1016/j.spa.2004.07.006
  • Sarda, P., & Vieu, P. (2000). Kernel regression. Wiley Series in Probability and Statistics (pp. 43–70).
  • Tabti, H., & Ait Saidi, A. (2018). Estimation and simulation of conditional hazard function in the quasi-associated framework when the observations are linked via a functional single-index structure. Communications in Statistics -- Theory and Methods, 47(4), 816838. https://doi.org/10.1080/03610926.2016.1213294

To cite this article: Fadila Benaissa, Abdelmalek Gagui & Abdelhak Chouaf (2021): Asymptotic
properties of a nonparametric conditional density estimator in the local linear estimation for
functional data via a functional single-index model, Statistical Theory and Related Fields, DOI:
10.1080/24754269.2021.1965945
To link to this article: https://doi.org/10.1080/24754269.2021.1965945