References
- Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal Society. Series A, Mathematical and Physical Sciences, 160, 268–282. https://doi.org/10.1098/rspa.1937.0109 [Crossref], [Google Scholar]
- Bhandary, M., & Dai, H. (2009). An alternative test for the equality of variances for several populations when the underlying distributions are normal. Communications in Statistics Simulation and Computation, 38(1–2), 109–117. https://doi.org/10.1080/03610918.2014.955110 [Web of Science ®], [Google Scholar]
- Bishop, D., & Nair, U. (1939). A note on certain methods of testing for the homogeneity of a set of estimated variances. Supplement to the Journal of the Royal Statistical Society, 6(1), 89–99. https://doi.org/10.2307/2983627 [Crossref], [Google Scholar]
- Boos, D. D., & Brownie, C. (1989). Bootstrap methods for testing homogeneity of variances. Technometrics, 31(1), 69–82. https://doi.org/10.1080/00401706.1989.10488477 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Box, G. E. P. (1953). Non-normality and tests on variances. Biometrika, 40, 318–335. https://doi.org/10.1093/biomet/40.3-4.318 [Crossref], [Web of Science ®], [Google Scholar]
- Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the American Statistical Association, 69(346), 364–367. https://doi.org/10.1080/01621459.1974.10482955 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Cochran, W. G. (1951). Testing a linear relation among variances. Biometrics, 7, 17–32. https://doi.org/10.2307/3001601 [Crossref], [Web of Science ®], [Google Scholar]
- Gokpinar, E., & Gokpinar, F. (2017). Testing equality of variances for several normal populations. Communications in Statistics Simulation and Computation, 46(1), 38–52. https://doi.org/10.1080/03610918.2014.955110 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Hartley, H. O. (1940). Testing the homogeneity of a set of variances. Biometrika, 31, 249–255. https://doi.org/10.1093/biomet/31.3-4.249 [Crossref], [Web of Science ®], [Google Scholar]
- Hartley, H. O. (1950). The maximum F-ratio as a short-cut test for heterogeneity of variance. Biometrika, 37, 308–312. https://doi.org/10.2307/2332383 [Crossref], [Web of Science ®], [Google Scholar]
- Levene, H. (1960). Contributions to probability and statistics: Essays in honor of Harold Hotelling, In I. Olkin, S. G. Ghurye, W. Hoeffding, W. G. Madow, H. B. Mann (Eds.), Stanford studies in mathematics and statistics (Vol. 2). Stanford University Press. [Google Scholar]
- Liu, X., & Xu, X. (2010). A new generalized p-value approach for testing the homogeneity of variances. Statistics & Probability Letters, 80(19-20), 1486–1491. https://doi.org/10.1016/j.spl.2010.05.017 [Crossref], [Web of Science ®], [Google Scholar]
- Ma, X.-B., Lin, F.-C., & Zhao, Y. (2015). An adjustment to the Bartlett's test for small sample size. Communications in Statistics Simulation and Computation, 44(1), 257–269. https://doi.org/10.1080/03610918.2013.773347 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
- Pal, N., Lim, W. K., & Ling, C.-H. (2007). A computational approach to statistical inferences. Journal of Applied Probability and Statistics, 2(1), 13–35. [Google Scholar]
- Pardo, J., Pardo, M., Vicente, M., & Esteban, M. (1997). A statistical information theory approach to compare the homogeneity of several variances. Computational Statistics & Data Analysis, 24(4), 411–416. https://doi.org/10.1016/S0167-9473(96)00080-1 [Crossref], [Web of Science ®], [Google Scholar]
- Teschendorff, A. E., & Widschwendter, M. (2012). Differential variability improves the identification of cancer risk markers in dna methylation studies profiling precursor cancer lesions. Bioinformatics (Oxford, England), 28, 1487–1494. https://doi.org/10.1093/bioinformatics/bts170 [Crossref], [Web of Science ®], [Google Scholar]
- Tian, L. (2005). Inferences on the mean of zero-inflated lognormal data: The generalized variable approach. Statistics in Medicine, 24(20), 3223–3232. https://doi.org/10.1002/(ISSN)1097-0258 [Crossref], [Web of Science ®], [Google Scholar]
- Tian, L. (2007). Inferences on standardized mean difference: The generalized variable approach. Statistics in Medicine, 26(5), 945–953. https://doi.org/10.1002/(ISSN)1097-0258 [Crossref], [Web of Science ®], [Google Scholar]
- Weerahandi, S. (2004). Generalized inference in repeated measures. Wiley-Interscience [John Wiley & Sons]. [Google Scholar]
- Wu, J., & Wong, A. C. M. (2003). A note on determining the p-value of Bartlett's test of homogeneity of variances. Communications in Statistics Theory and Methods, 32(1), 91–101. https://doi.org/10.1081/STA-120017801 [Taylor & Francis Online], [Web of Science ®], [Google Scholar]