References
- Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231. https://doi.org/10.1214/ss/1009213726 [Crossref], [Web of Science ®], [Google Scholar]
- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth Statistics/Probability Series. [Google Scholar]
- Bühlmann, H., & Gisler, A. (2005). A course in credibility theory and its applications. Springer. [Google Scholar]
- CASdatasets Package Vignette (2018). Version 1.0-8, May 20, 2018. http://cas.uqam.ca [Google Scholar]
- Charpentier, A. (2015). Computational actuarial science with R. CRC Press. [Google Scholar]
- Cheng, X., Jin, Z., & Yang, H. (2020). Optimal insurance strategies: A hybrid deep learning Markov chain approximation approach. ASTIN Bulletin, 50(2), 449–477. https://doi.org/10.1017/asb.2020.9 [Crossref], [Web of Science ®], [Google Scholar]
- Cox, D. R. (1958). The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B (Methodological), 20(2), 215–232. https://doi.org/10.1111/j.2517-6161.1958.tb00292.x [Crossref], [Web of Science ®], [Google Scholar]
- Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2(4), 303–314. https://doi.org/10.1007/BF02551-274 [Crossref], [Google Scholar]
- Gabrielli, A. (2020). A neural network boosted double overdispersed Poisson claims reserving model. ASTIN Bulletin, 50(1), 25–60. https://doi.org/10.1017/asb.2019.33 [Crossref], [Web of Science ®], [Google Scholar]
- Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of Machine Learning Research, 9, 249–256. Proceedings of the thirteenth international conference on artificial intelligence and statistics. [Google Scholar]
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. [Google Scholar]
- Green, P. J. (1984). Iteratively reweighted least squares for maximum likelihood estimation, and some robust and resistant alternatives. Journal of the Royal Statistical Society: Series B (Methodological), 46(2), 149–170. https://doi.org/10.1111/j.2517-6161.1984.tb01288.x [Crossref], [Web of Science ®], [Google Scholar]
- Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8 [Crossref], [Web of Science ®], [Google Scholar]
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nat-ure14539 [Crossref], [Web of Science ®], [Google Scholar]
- Lee, G. Y., Manski, S., & Maiti, T. (2020). Actuarial applications of word embedding models. ASTIN Bulletin, 50(1), 1–24. https://doi.org/10.1017/asb.2019.28 [Crossref], [Web of Science ®], [Google Scholar]
- McCullagh, P., & Nelder, J. A. (1983). Generalized linear models. Chapman & Hall. [Crossref], [Google Scholar]
- Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370–384. https://doi.org/10.2307/234-4614 [Crossref], [Web of Science ®], [Google Scholar]
- Noll, A., Salzmann, R., & Wüthrich, M. V. (2018). Case study: French motor third-party liability claims. SSRN Manuscript ID 3164764. Version March 4, 2020. [Crossref], [Google Scholar]
- Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the 5th Australian joint conference on artificial intelligence (pp. 343–348). Singapore: World Scientific. [Google Scholar]
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323-533a0 [Crossref], [Web of Science ®], [Google Scholar]
- Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003 [Crossref], [Web of Science ®], [Google Scholar]
- Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310. https://doi.org/10.1214/10-STS330 [Crossref], [Web of Science ®], [Google Scholar]
- Wang, C., Venkatesh, S. S., & Judd, J. S. (1994). Optimal stopping and effective machine complexity in learning. In Advances in neural information processing systems (NIPS'6) (pp. 303–310). [Google Scholar]
- Wang, Y., & Witten, I. H. (1997). Inducing model trees for continuous classes. In Proceedings of the ninth European conference on machine learning (pp. 128–137). [Google Scholar]
- Wüthrich, M. V., & Buser, C. (2016). Data analytics for non-life insurance pricing. SSRN Manuscript ID 2870308, Version of September 10, 2020. [Crossref], [Google Scholar]
- Wüthrich, M. V., & Merz, M. (2019). Editorial: Yes we CANN! ASTIN Bulletin, 49(1), 1–3. https://doi.org/10.1017/asb.2018.42 [Crossref], [Web of Science ®], [Google Scholar]