Review Articles

A discussion on “A selective review of statistical methods using calibration information from similar studies” by Qin, Liu and Li

Peisong Han

Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA

peisong@umich.edu

Pages | Received 20 Apr. 2022, Accepted 02 May. 2022, Published online: 10 Jun. 2022,
  • Abstract
  • Full Article
  • References
  • Citations
  • Chatterjee, N., Chen, Y. H., Maas, P., & Carroll, R. J. (2016). Constrained maximum likelihood estimation for model calibration using summary-level information from external big data sources. Journal of the American Statistical Association111(513), 107–117. https://doi.org/10.1080/01621459.2015.1123157 
  • Chen, Z., Ning, J., Shen, Y., & Qin, J. (2021). Combining primary cohort data with external aggregate information without assuming comparability. Biometrics77(3), 1024–1036. https://doi.org/10.1111/biom.v77.3
  • Estes, J. P., Mukherjee, B., & Taylor, J. M. G. (2018). Empirical bayes estimation and prediction using summary-level information from external big data sources adjusting for violations of transportability. Statistics in Biosciences10(3), 568–586. https://doi.org/10.1007/s12561-018-9217-4 
  • Gu, T., Taylor, J. M. G., & Mukherjee, B. (2021). A meta-inference framework to integrate multiple external models into a current study. Biostatistics, Article kxab017. https://doi.org/10.1093/biostatistics/kxab017
  • Han, P., & Lawless, J. F. (2016). Discussion of “Constrained maximum likelihood estimation for model calibration using summary-level information from external big data sources”. Journal of the American Statistical Association111(513), 118–121. https://doi.org/10.1080/01621459.2016.1149399 
  • Han, P., & Lawless, J. F. (2019). Empirical likelihood estimation using auxiliary summary information with different covariate distributions. Statistica Sinica29, 1321–1342. 
  • Neuhaus, J. M., & Jewell, N. P. (1993). A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika80(4), 807–815. https://doi.org/10.1093/biomet/80.4.807
  • Owen, A. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika75(2), 237–249. https://doi.org/10.1093/biomet/75.2.237 
  • Qin, J. (2000). Combining parametric and empirical likelihoods. Biometrika87(2), 484–490. https://doi.org/10.1093/biomet/87.2.484
  • Qin, J., & Lawless, J. (1994). Empirical likelihood and general estimating equations. The Annals of Statistics22(1), 300–325. https://doi.org/10.1214/aos/1176325370
  • Sheng, Y., Sun, Y., Huang, C.-Y, & Kim, M.-O. (2021). Synthesizing external aggregated information in the presence of population heterogeneity: A penalized empirical likelihood approach. Biometricshttps://doi.org/10.1111/biom.13429 
  • Taylor, J. M. G., Choi, K., & Han, P. (2022). Data integration – exploiting ratios of parameter estimates from a reduced external model. Biometrikahttps://doi.org/10.1093/biomet/asac022
  • Zhai, Y., & Han, P. (2022). Data integration with oracle use of external information from heterogeneous populations. Journal of Computational and Graphical Statisticshttps://doi.org/10.1080/10618600.2022.2050248 
  • Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association101(476), 1418–1429. https://doi.org/10.1198/016214506000000735