Review Articles

Discussion of “A selective review of statistical methods using calibration information from similar studies” and some remarks on data integration

Jerald F. Lawless

Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Canada

Pages | Received 30 Apr. 2022, Accepted 02 May. 2022, Published online: 19 May. 2022,
  • Abstract
  • Full Article
  • References
  • Citations
  • Dersimonian, R., & Laird, N. M. (1986). Meta-analysis in clinical trials. Controlled Clinical Trials7, 177–188. 
  • DerSimonian, R., & Laird, N. M. (2015). Meta-analysis in clinical trials revisited. Contemporary Clinical Trials45(2), 139–145.
  • Estes, J. P., Mukherjee, B., & Taylor, J. M. G. (2018). Empirical Bayes estimation and prediction using summary-level information from external big data sources adjusting for violations of transportability. Statistics in Biosciences10(3), 568–586. 
  • Gneiting, T., & Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of Statistics and Its Application1(1), 125–151. 
  • Gu, T., Taylor, J. M. G., & Mukherjee, B. (2021). A meta-inference framework to integrate multiple external models into a current study. Biostatistics (Oxford, England)
  • Han, P., & Lawless, J. F. (2019). Empirical likelihood estimation using auxiliary summary information with different covariate distributions. Statistica Sinica29(3), 1321–1342. 
  • Keiding, N., & Louis, T. A. (2016). Perils and potentials of self-selected entry to epidemiological studies and surveys (with discussion). Journal of the Royal Statistical Society: Series A179(2), 319–376. 
  • Kundu, P., Tang, R., & Chatterjee, N. (2019). Generalized meta-analysis for multiple regression models across studies with disparate covariate information. Biometrika106(3), 567–585. 
  • Thompson, S. G., & Higgins, J. P. T. (2002). How should meta-regression analyses be undertaken and interpreted? Statistics in Medicine21(11), 1559–1573.