Review Articles

Reliability estimation of s-out-of-k system with Kumaraswamy distribution based on partially constant stress accelerated life tests

Dongzhu Lamu ,

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, People's Republic of China

Rongfang Yan

College of Mathematics and Statistics, Northwest Normal University, Lanzhou, People's Republic of China;b Gansu Provincial Research Center for Basic Disciplines of Mathematics and Statistics, Lanzhou, People's Republic of China

yanrf@nwnu.edu.cn

Pages | Received 28 Sep. 2023, Accepted 09 May. 2024, Published online: 05 Jun. 2024,
  • Abstract
  • Full Article
  • References
  • Citations

In reliability theory, the reliability inference for s-out-of-k systems holds significant importance. In this paper, we explore the estimation of reliability for s-out-of-k systems based on partially constant stress accelerated life tests. Assume that the latent failure times of the components follow the Kumaraswamy distribution. Maximum likelihood estimates for the unknown parameters are established, and their uniqueness is demonstrated. In addition, confidence intervals for the unknown parameters are constructed using the covariance matrix. Confidence intervals for the reliability functions are determined by the Delta method, while Bootstrap intervals are provided for comparison purposes. Subsequently, Bayesian point and interval estimates based on MCMC techniques considering different loss functions are discussed. Lastly, we conduct an extensive simulation study and analyse one real data set, which reveals that the Bayesian approach yields the best results.

References

  • Aban, I., Meerschaert, M., & Panorska, A. (2006). Parameter estimation for the truncated Pareto distribution. Journal of the American Statistical Association101(473), 270–277. https://doi.org/10.1198/016214505000000411
  • Aljohani, H. M., & Alfar, N. M. (2020). Estimations with step-stress partially accelerated life tests for competing risks Burr XII lifetime model under type-II censored data. Alexandria Engineering Journal59(3), 1171–1180. https://doi.org/10.1016/j.aej.2020.01.022
  • Asa, A., Mhe, A., Hma, B., & Ae, C. (2022). Estimations of accelerated Lomax lifetime distribution with a dependent competing risks model under type-I generalized hybrid censoring scheme. Alexandria Engineering Journal61(8), 6489–6499. https://doi.org/10.1016/j.aej.2021.12.006
  • Barlow, R., & Proschan, F. (1975). Statistical theory of reliability and life testing: Probability models. Holt, Rinehart and Winston.
  • Bhattacharyya, G. K., & Johnson, R. A. (1974). Estimation of reliability in multicomponent stress-strength model. Journal of the American Statistical Association69(348), 966–970. https://doi.org/10.1080/01621459.1974.10480238
  • Cai, J., Shi, Y., & Liu, B. (2020). Bayesian analysis for dependent competing risks model with masked causes of failure in step-stress accelerated life test under progressive hybrid censoring. Communications in Statistics – Simulation and Computation49(9), 2302–2320. https://doi.org/10.1080/03610918.2018.1517212
  • Dey, S., Wang, L., & Nassar, M. (2022). Inference on Nadarajah-Haghighi distribution with constant stress partially accelerated life tests under progressive type-II censoring. Journal of Applied Statistics49(11), 2891–2912. https://doi.org/10.1080/02664763.2021.1928014
  • Efron, B. (1982). The Jackknife, the Bootstrap and other resampling plans. Society for industrial and applied mathematics.
  • Fan, T. H., & Hsu, T. M. (2014). Constant stress accelerated life test on a multiple-component series system under Weibull lifetime distributions. Communications in Statistics-Theory and Methods43(11), 2370–2383. https://doi.org/10.1080/03610926.2013.809115
  • Fu, Y., Han, G., Chen, J., & Ma, J. (2009). Research of accelerated life test of complex system based on pneumatic system (in Chinese version). Journal of Mechanical Strength31(4), 578–583.
  • Genc, A. (2013). Estimation of P(X>Y) with Topp-Leone distribution. Journal of Statistical Computation and Simulation83(2), 326–339. https://doi.org/10.1080/00949655.2011.607821
  • Gholizadeh, R. A., Shirazi, M. A., & Mosalmanza, S. (2011). Classical and Bayesian estimations on the Kumaraswamy distribution using grouped and un-grouped data under difference loss functions. Journal of Applied Sciences11(12), 2154–2162. https://doi.org/10.3923/jas.2011.2154.2162
  • Ghosh, I., & Nadarajah, S. (2017). On the Bayesian inference of Kumaraswamy distributions based on censored samples. Communication in Statistics-Theory and Methods46(17), 8760–8777. https://doi.org/10.1080/03610926.2016.1193197
  • Greene, W. H. (2000). Econometric analysis (4th ed.). Wiley.
  • Guo, Z., Zhang, J., & Yan, R. (2020). The residual lifetime of surviving components of coherent system under periodical inspections. Mathematics8(12), 2227–7390. https://doi.org/10.3390/math8122181
  • Guo, Z., Zhang, J., & Yan, R. (2022). On inactivity times of failed components of coherent system under double monitoring. Probability in the Engineering and Informational Sciences36(3), 923–940. https://doi.org/10.1017/S0269964821000152
  • Guo, M., Zhang, J., Zhang, Y., & Zhao, P. (2024). Optimal redundancy allocations for series systems under hierarchical dependence structures. Quality and Reliability Engineering International40(4), 1540–1565. https://doi.org/10.1002/qre.3508
  • Hua, R., & Gui, W. (2022). Inference for copula-based dependent competing risks model with step-stress accelerated life test under generalized progressive hybrid censoring. Computational Statistics37(5), 2399–2436. https://doi.org/10.1007/s00180-022-01203-w
  • Ismail, A. A. (2014). Inference for a step-stress partially accelerated life test model with an adaptive type-II progressively hybrid censored data from Weibull distribution. Journal of Computational and Applied Mathematics260, 533–542. https://doi.org/10.1016/j.cam.2013.10.014
  • Ismail, A. A. (2016). Statistical inference for a step-stress partially-accelerated life test model with an adaptive type-I progressively hybrid censored data from Weibull distribution. Statistical Papers57(2), 271–301. https://doi.org/10.1007/s00362-014-0639-x
  • Kizilaslan, F., & Nadar, M. (2016). Estimation and prediction of the Kumaraswamy distribution based on record values and inter-record times. Journal of Statistical Computation & Simulation86(12), 2471–2493. https://doi.org/10.1080/00949655.2015.1119832
  • Kohansal, A. (2019). On estimation of reliability in a multicomponent stress-strength model for a Kumaraswamy distribution based on progressively censored sample. Statistical Papers60(6), 2185–2224. https://doi.org/10.1007/s00362-017-0916-6
  • Kumaraswamy, P. (1980). A generalized probability density function for double-bounded random processes. Journal of Hydrology46(1-2), 79–88. https://doi.org/10.1016/0022-1694(80)90036-0
  • Liu, B., Shi, Y., Zhang, F., & Bai, X. (2017). Reliability nonparametric Bayesian estimation for the masked data of parallel systems in step-stress accelerated life tests. Journal of Computational & Applied Mathematics311, 375–386. https://doi.org/10.1016/j.cam.2016.07.029
  • Lu, B., Zhang, J., & Yan, R. (2023). Optimal allocation of a coherent system with statistical dependent subsystems. Probability in the Engineering and Informational Sciences37(1), 29–48. https://doi.org/10.1017/S0269964821000437
  • Nelson, W. (2008). Accelerated testing: Statistical models, test plans, and data analysis. Wiley.
  • Rastogi, M. K., Saad, J., Farghal, A. A., & G. A. Elmougod (2022). Partially constant-stress accelerated life tests model for parameters estimation of Kumaraswamy distribution under adaptive type-II progressive censoring. Alexandria Engineering Journal61(7), 5133–5143. https://doi.org/10.1016/j.aej.2021.10.035
  • Roy, S. (2018). Bayesian accelerated life test plans for series systems with Weibull component lifetimes. Applied Mathematical Modelling62, 383–403. https://doi.org/10.1016/j.apm.2018.06.007
  • Samanta, D., Gupta, A., & Kundu, D. (2019). Analysis of Weibull step-stress model in presence of competing risk. IEEE Transactions on Reliability68(2), 420–438. https://doi.org/10.1109/TR.24
  • Wang, L. (2017). Inference of constant-stress accelerated life test for a truncated distribution under progressive censoring. Applied Mathematical Modelling44, 743–757. https://doi.org/10.1016/j.apm.2017.02.011
  • Wang, L., Dey, S., Tripathi, Y. M., & Wu, S. J. (2020). Reliability inference for a multicomponent stress-strength model based on Kumaraswamy distribution. Journal of Computational and Applied Mathematics376, Article 112823. https://doi.org/10.1016/j.cam.2020.112823
  • Wang, L., Wu, S. J., Zhang, C., Dey, S., & Tripathi, Y. M. (2022). Analysis for constant-stress model on multicomponent system from generalized inverted exponential distribution with stress dependent parameters. Mathematics and Computers in Simulation193(C), 301–316. https://doi.org/10.1016/j.matcom.2021.10.017
  • Wang, L., Zhang, C., Tripathi, Y. M., Dey, S., & Wu, S. (2021). Reliability analysis of Weibull multicomponent system with stress-dependent parameters from accelerated life data. Quality and Reliability Engineering International37(6), 2603–2621. https://doi.org/10.1002/qre.v37.6
  • Xu, A., Fu, J., Tang, Y., & Guan, Q. (2015). Bayesian analysis of constant-stress accelerated life test for the Weibull distribution using noninformative priors. Applied Mathematical Modelling39(20), 6183–6195. https://doi.org/10.1016/j.apm.2015.01.066
  • Xu, A., & Tang, Y. (2011). Objective Bayesian analysis of accelerated competing failure models under type-I censoring. Computational Statistics & Data Analysis55(10), 2830–2839. https://doi.org/10.1016/j.csda.2011.04.009
  • Yan, R., & Niu, J. (2022). Stochastic comparisons of second-order statistics from dependent and heterogenous modified proportional hazard rate observations. Statistics57(2), 328–353. https://doi.org/10.1080/02331888.2023.2177999
  • Yan, R., Wang, J., & Lu, B. (2021). Orderings of component level versus system level at active redundancies for coherent systems with dependent components. Probability in the Engineering and Informational Sciences36(4), 1275–1297. https://doi.org/10.1017/S0269964821000401
  • Yan, R., Zhang, J., & Wang, J. (2022). Optimal allocation of relevations in coherent systems. Journal of Applied Probability58(4), 293–298.
  • Zhang, J., Guo, Z., Niu, J., & Yan, R. (2024). Increasing convex order of capital allocation with dependent assets under threshold model. Statistical Theory and Related Fields, 1–12. https://doi.org/10.1080/24754269.2023.2301630
  • Zhang, C., Shi, Y., & Wu, M. (2016). Statistical inference for competing risks model in step-stress partially accelerated life tests with progressively type-I hybrid censored Weibull life data. Journal of Computational & Applied Mathematics297, 65–74. https://doi.org/10.1016/j.cam.2015.11.002
  • Zhang, T., & Xie, M. (2011). On the upper truncated Weibull distribution and its reliability implications. Reliability Engineering & System Safety96(1), 194–200. https://doi.org/10.1016/j.ress.2010.09.004
  • Zhang, J., Yan, R., & Wang, J. (2022). Reliability optimization of parallel-series and series-parallel systems with statistically dependent components. Applied Mathematical Modelling102, 618–639. https://doi.org/10.1016/j.apm.2021.10.003
  • Zhang, J., Yan, R., & Zhang, Y. (2022). Reliability analysis of fail-safe systems with heterogeneous and dependent components subject to random shocks. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability237(6), 1073–1087.
  • Zhang, J., Yan, R., & Zhang, Y. (2023). Stochastic comparisons of largest claim amount from heterogeneous and dependent insurance portfolios. Journal of Computational and Applied Mathematics431, Article 115265. https://doi.org/10.1016/j.cam.2023.115265
  • Zhang, J., & Zhang, Y. (2022). A copula-based approach on optimal allocation of hot standbys in series systems. Naval Research Logistics (NRL)69(6), 902–913. https://doi.org/10.1002/nav.v69.6
  • Zhang, J., & Zhang, Y. (2023). Stochastic comparisons of relevation allocation policies in coherent systems. Test32(3), 865–907. https://doi.org/10.1007/s11749-023-00855-0
  • Zuo, M. J. (2003). Optimal reliability modeling, principles and applications. Wiley.

To cite this article: Dongzhu Lamu & Rongfang Yan (05 Jun 2024): Reliability estimation of sout-of-k system with Kumaraswamy distribution based on partially constant stress accelerated life tests, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2024.2359826

To link to this article: https://doi.org/10.1080/24754269.2024.2359826