Review Articles

L0-regularized high-dimensional sparse multiplicative models

Hao Ming ,

College of Mathematics and Statistics, Chongqing University, Chongqing, People's Republic of China

Hu Yang ,

College of Mathematics and Statistics, Chongqing University, Chongqing, People's Republic of China

Xiaochao Xia

College of Mathematics and Statistics, Chongqing University, Chongqing, People's Republic of China

xxc@cqu.edu.cn

Pages | Received 27 May. 2024, Accepted 18 Jan. 2025, Published online: 16 Feb. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

In this paper, we study high-dimensional sparse multiplicative models for positive response data and propose a variable sorted active set (VSAS) algorithm for finding the L0 regularized least product relative error (LPRE) estimator. The VSAS algorithm is derived from the local quadratic approximation based on the Karush-Kuhn-Tucker (KKT) conditions of L0-penalized LPRE objective function. Under the condition of restricted invertibility, we establish an explicit L∞ upper bound for the sequence of solutions generated by the VSAS algorithm. We further obtain an optimal convergence rate for the proposed estimator with high probability in finite iterations. In addition, our estimator enjoys the oracle property with high probability if the target signal exceeds the detectable level. Finally, extensive simulations and two real-world applications are conducted to illustrate the effectiveness of the proposal.

References

  • Bühlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a view towards applications in biology. Annual Review of Statistics and Its Applications1(1), 255–278.
  • Cao, Y., Kang, L., Li, X., Liu, Y., Luo, Y., & Yang, Q. (2023). Newton-Raphson meets sparsity: Sparse learning via a novel penalty and a fast solver. IEEE Transactions on Neural Networks and Learning Systems35(9), 11057–12067.
  • Chen, Z., Fan, J., & Li, R. (2018). Error variance estimation in ultrahigh dimensional additive models. Journal of the American Statistical Association113(521), 315–324.
  • Chen, X., Ge, D., Wang, Z., & Ye, Y. (2014). Complexity of unconstrained L2-Lp minimization. Mathematical Programming143(1-2), 371–383.
  • Chen, K., Guo, S., Lin, Y., & Ying, Z. (2010). Least absolute relative error estimation. Journal of the American Statal Association105(491), 1104–1112.
  • Chen, K., Lin, Y., Wang, Z., & Ying, Z. (2016). Least product relative error estimation. Journal of Multivariate Analysis144, 91–98.
  • Chen, Y., Liu, H., & Ma, J. (2022). Local least product relative error estimation for single-index varying-coefficient multiplicative model with positive responses. Journal of Computational and Applied Mathematics415, 114478.
  • Chen, Y., Ming, H., & Yang, H. (2024). Efficient variable selection for high-dimensional multiplicative models: A novel LPRE-based approach. Statistical Papers65(6), 3713–3737.
  • Cheng, C., Feng, X., Huang, J., Jiao, Y., & Zhang, S. (2022). L0-regularized high-dimensional accelerated failure time model. Computational Statistics and Data Analysis170, 107430.
  • Do, H., Cheon, M., & Kim, S. (2020). Graph structured sparse subset selection. Information Sciences518, 71–94.
  • Fan, Q., Jiao, Y., & Lu, X. (2014). A primal dual active set algorithm with continuation for compressed sensing. IEEE Transactions on Signal Processing62(23), 6276–6285.
  • Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association96(456), 1348–1360.
  • Fan, J., & Lv, J. (2008). Sure independence screening for ultra-high dimensional feature space. Journal of the Royal Statistical Society Series B70(5), 849–911.
  • Hao, M., Lin, Y., & Zhao, X. (2016). A relative error-based approach for variable selection. Computational Statistics and Data Analysis103, 250–262.
  • Hu, D. (2019). Local least product relative error estimation for varying coefficient multiplicative regression model. Acta Mathematicae Applicatae Sinica, English Series35(2), 274–286.
  • Huang, J., Jiao, Y., Jin, B., Liu, J., Liu, Y., & Yang, C. (2021). A unified primal dual active set algorithm for nonconvex sparse recovery. Statistical Science36(2), 215–238.
  • Huang, J., Jiao, Y., Kang, L., & Liu, Y. (2021). Fitting sparse linear models under the sufficient and necessary condition for model identification. Statistics and Probability Letters168, 108925.
  • Huang, J., Jiao, Y., Kang, L., Liu, J., Liu, Y., & Lu, X. (2022). GSDAR: A fast Newton algorithm for l0 regularized generalized linear models with statistical guarantee. Computational Statistics37(1), 507–533.
  • Huang, J., Jiao, Y., Liu, Y., & Lu, X. (2018). A constructive approach to L0 penalized regression. Journal of Machine Learning Research19(10), 1–37.
  • Huang, J., Jiao, Y., Lu, X., Shi, Y., Yang, Q., & Yang, Y. (2022). PSNA: A pathwise semismooth Newton algorithm for sparse recovery with optimal local convergence and oracle properties. Signal Processing194, 108432.
  • Javanmard, A., & Montanari, A. (2014). Confidence intervals and hypothesis testing for high-dimensional regression. Journal of Machine Learning Research15(82), 2869–2909.
  • Li, P., Jiao, Y., Lu, X., & Kang, L. (2022). A data-driven line search rule for support recovery in high-dimensional data analysis. Computational Statistics and Data Analysis174, 107524.
  • Li, X., Shi, Z., & Leung, C. (2022). Sparse index tracking with K-sparsity or ϵ-deviation constraint via ℓ0-norm minimization. IEEE Transactions on Neural Networks and Learning Systems34(12), 10930–10943.
  • Liu, W., Ke, Y., Liu, J., & Li, R. (2022). Model-free feature screening and FDR control with knockoff features. Journal of the American Statistical Association117(537), 428–443.
  • Liu, H., & Xia, X. (2018). Estimation and empirical likelihood for single-index multiplicative models. Journal of Statistical Planning and Inference193, 70–88.
  • Ming, H., Liu, H., & Yang, H. (2022). Least product relative error estimation for identification in multiplicative additive models. Journal of Computational and Applied Mathematics404, 113886.
  • Ming, H., & Yang, H. (2024a). A fast robust best subset regression. Knowledge-Based Systems284, 111309.
  • Ming, H., & Yang, H. (2024b). L0 regularized regularized logistic regression for large-scale data. Pattern Recognition146, 110024.
  • Natarajan, B. (1995). Sparse approximate solutions to linear systems. SIAM Journal on Computing24(2), 227–234.
  • Shi, Y., Huang, J., Jiao, Y., & Yang, Q. (2020). A semismooth Newton algorithm for high-dimensional nonconvex sparse learning. IEEE Transactions on Neural Networks and Learning Systems31(8), 2993–3006.
  • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society, Series B58(1), 267–288.
  • Vershynin, R. (2018). High-dimensional Probability: An Introduction with Applications in Data Science. Cambridge University Press.
  • Wang, H. (2009). Forward regression for ultra-high dimensional variable screening. Journal of the American Statistical Association104(488), 1512–1524.
  • Wang, L., Kim, Y., & Li, R. (2013). Calibrating non-convex penalized regression in ultra-high dimension. The Annals of Statistics41(5), 2505–2536.
  • Wang, Z., Liu, W., & Lin, Y. (2015). A change-point problem in relative error-based regression. Test24(4), 835–856.
  • Wen, C., Li, Z., Dong, R., Ni, Y., & Pan, W. (2023). Simultaneous dimension reduction and variable selection for multinomial logistic regression. INFORMS Journal on Computing35(5), 1044–1060.
  • Wen, C., Wang, X., & Zhang, A. (2023). 0 trend filtering. INFORMS Journal on Computing35(6), 1491–1510.
  • Wen, C., Zhang, A., Quan, S., & Wang, X. (2020). BeSS: An R package for best subset selection in linear, logistic and cox proportional hazards models. Journal of Statistical Software94(4), 1–24.
  • Zhang, C. (2010). Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics38(2), 894–942.
  • Zhang, J., Feng, Z., & Peng, H. (2018). Estimation and hypothesis test for partial linear multiplicative models. Computational Statistics and Data Analysis128, 87–103.
  • Zhang, J., Lin, B., & Yang, Y. (2022). Maximum nonparametric kernel likelihood estimation for multiplicative linear regression model. Statistical Papers63(3), 885–918.
  • Zhang, J., Zhu, J., & Feng, Z. (2019). Estimation and hypothesis test for single-index multiplicative models. Test28(1), 242–268.
  • Zhang, Y., Zhu, J., Zhu, J., & Wang, X. (2023). A splicing approach to best subset of groups selection. INFORMS Journal on Computing35(1), 104–119.
  • Zhao, P., Yang, Y., & He, Q. (2022). High-dimensional linear regression via implicit regularization. Biometrika109(4), 1033–1046.
  • Zheng, Z., Zhang, J., & Li, Y. (2022). L0-regularized learning for high-dimensional additive hazards regression. INFORMS Journal on Computing34(5), 2762–2775.
  • Zhou, S., Pan, L., & Xiu, N. (2021). Newton method for L0-regularized optimization. Numerical Algorithms88(4), 1541–1570.
  • Zhu, J., Wen, C., Zhu, J., & Wang, X. (2020). A polynomial algorithm for best-subset selection problem. Proceedings of the National Academy of Sciences of the United States of America117(52), 33117–33123.

To cite this article: Hao Ming, Hu Yang & Xiaochao Xia (16 Feb 2025): L0-regularized highdimensional sparse multiplicative models, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2460148

To link to this article: https://doi.org/10.1080/24754269.2025.2460148