Review Articles

Lehmann-type family of location-scale t distributions with two degrees of freedom

Vikas Kumar Sharma ,

Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India

Komal Shekhawat ,

Department of Basic Sciences, Institute of Infrastructure, Technology, Research and Management, Ahmedabad, India

komal.shekhawat678@gmail.com

Princy Kaushik

Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi, India

Pages | Received 14 Jun. 2023, Accepted 11 Jul. 2025, Published online: 08 Sep. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

This article introduces a three-parameter Lehman-type t distribution having 2 degrees of freedom, that is capable of fitting positive and negative skewed data sets. It is shown that the density and hazard functions of the proposed distribution are uni-model. Ordinary moments, entropy measure, ordering, identifiability and order statistics are investigated. Since the quantile function is explicitly defined, quantile-based statistics are also discussed for the proposed distribution. These properties include measures of skewness and kurtosis, L-moments, quantile density and hazard functions, mean residual life function and Parzen's score function. Mechanisms of maximum likelihood, bias correction and matching of percentiles are employed for estimating the unknown parameters of the distribution. Simulation experiments are conducted to compare the performance of these three estimation methods. A real-life data set consisting of strength of glass fibres is fitted to show the adequacy of the proposed distribution over some extensions of the normal and t distributions. Parametric regression model is developed along with its parameter estimation using the maximum likelihood approach. Simulation study for the regression model is also presented that endorsed the asymptotic properties of the estimators.

References

  • Aas, K., & Haff, I. H. (2006). The generalized hyperbolic skew Student's t-distribution. Journal of Financial Econometrics4(2), 275–309. https://doi.org/10.1093/jjfinec/nbj006
  • Ahsanullah, M., & Nevzorov, V. B. (2017). Some inferences on skew-t distribution of 2 degrees of freedom. Journal of Statistical Theory and Applications16(4), 419–426. https://doi.org/10.2991/jsta.2017.16.4.1
  • Akhundov, I. S., Balakrishnan, N., & Nevzorov, V. B. (2004). New characterizations by properties of midrange and related statistics. Communications in Statistics Theory and Methods33(12), 3133–3143. https://doi.org/10.1081/STA-200039063
  • Akhundov, I., & Nevzorov, V. B. (2012). From Student's t2 distribution to Student's t3 distribution through characterizations. Communications in Statistics-Simulation and Computation41(6), 710–716. https://doi.org/10.1080/03610918.2012.625270
  • Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian Journal of Statistics12(2), 171–178.
  • Bai, R., Koay, C. G., Hutchinson, E., & Basser, P. J. (2014). A framework for accurate determination of the T2 distribution from multiple echo magnitude MRI images. Journal of Magnetic Resonance244, 53–63. https://doi.org/10.1016/j.jmr.2014.04.016
  • Bartlett, M. S. (1953). Approximate confidence intervals. Biometrika40(1-2), 306–317. https://doi.org/10.1093/biomet/40.1-2.12
  • Basalamah, D., Ning, W., & Gupta, A. (2018). The beta skew t distribution and its properties. Journal of Statistical Theory and Practice12(4), 837–860. https://doi.org/10.1080/15598608.2018.1481468
  • Basu, A. P., & Ghosh, J. K. (1980). Identifiability of distributions under competing risks and complementary risks model. Communications in Statistics-Theory and Methods9(14), 1515–1525. https://doi.org/10.1080/03610928008827978
  • Cox, D. R., & Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological)30(2), 248–275. https://doi.org/10.1111/j.2517-6161.1968.tb00724.x
  • de Souza, A., & Tsallis, C. (1997). Student's t- and r-distributions: Unified derivation from an entropic variational principle. Physica A: Statistical Mechanics and Its Applications236(1-2), 52–57. https://doi.org/10.1016/S0378-4371(96)00395-0
  • Fergusson, K., & Platen, E. (2006). On the distributional characterization of daily log-returns of a world stock index. Applied Mathematical Finance13(1), 19–38. https://doi.org/10.1080/13504860500394052
  • Freeman, J., & Modarres, R. (2006). Inverse box–cox: The power-normal distribution. Statistics and Probability Letters76(8), 764–772. https://doi.org/10.1016/j.spl.2005.10.036
  • Glaser, R. E. (1980). Bathtub and related failure rate characterization. Journal of the American Statistical Association75(371), 667–672. https://doi.org/10.1080/01621459.1980.10477530
  • Gupta, R., & Gupta, R. (2008). Analyzing skewed data by power normal model. Test17(1), 197–210. https://doi.org/10.1007/s11749-006-0030-x
  • Gupta, R. C., Gupta, P. L., & Gupta, R. D. (1998). Modeling failure time data by Lehman alternatives. Communications in Statistics-Theory and Methods27(4), 887–904. https://doi.org/10.1080/03610929808832134
  • Gupta, R. D., & Kundu, D. (2001). Exponentiated exponential family: An alternative to gamma and Weibull distributions. Biometrical Journal43(1), 117–130. https://doi.org/10.1002/(ISSN)1521-4036
  • Hill, G. (1970). ACM algorithm 395: Student's t-distribution. Communications of the ACM13(1), 587–634.
  • Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society: Series B (Methodological)52(1), 105–124. https://doi.org/10.1111/j.2517-6161.1990.tb01775.x
  • Jones, M. C. (2002). Student's simplest distribution. Journal of the Royal Statistical Society Series D: The Statistician51(1), 41–49.
  • Kalbfleisch, J. D., & Prentice, R. L. (2002). The Statistical Analysis of Failure Time Data. John Wiley & Sons.
  • Lehmann, E. L. (1953). The power of rank tests. Annals of Mathematical Statistics24(1), 23–43. https://doi.org/10.1214/aoms/1177729080
  • Liu, X. (2012). Survival Analysis: Model and Application. John Wiley & Sons.
  • Ma, Y., & Genton, M. G. (2004). Flexible class of skew-symmetric distributions. Scandinavian Journal of Statistics31(3), 459–468. https://doi.org/10.1111/sjos.2004.31.issue-3
  • Marshall, A. W., & Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families. Springer.
  • Massing, T., & Ramos, A. (2021). Student's t mixture models for stock indices. A comparative study. Physica A: Statistical Mechanics and Its Applications580, 126143. https://doi.org/10.1016/j.physa.2021.126143
  • Mudholkar, G. S., & Srivastava, D. K. (1993). Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Transactions on Reliability42(2), 299–302. https://doi.org/10.1109/24.229504
  • Nadarajah, S. (2006). The exponentiated Gumbel distribution with climate application. Environmetrics17(1), 13–23. https://doi.org/10.1002/(ISSN)1099-095X
  • Nair, N. U., Sankaran, P. G., & Kumar, B. V. (2012). Modelling lifetimes by quantile functions using Parzen's score function. Statistics46(6), 799–811. https://doi.org/10.1080/02331888.2011.555551
  • Nassar, M. M., & Eissa, F. H. (2003). On the exponentiated Weibull distribution. Communications in Statistics-Theory and Methods32(7), 1317–1336. https://doi.org/10.1081/STA-120021561
  • Nevzorov, V. B. (2005). One property of Student's distribution with two degrees of freedom. Journal of Mathematical Sciences127(1), 1757–1762. https://doi.org/10.1007/s10958-005-0137-8
  • Nevzorov, V. B., Balakrishnan, N., & Ahsanullah, M. (2003). Simple characterizations of Student's t2-distribution. The Statistician52(3), 395–400. https://doi.org/10.1111/rssd.2003.52.issue-3
  • Obubu, M., Oyamakin, S., & Thomas, E. (2019). The Gompertz length biased exponential distribution and its application to uncensored data. Current Trends on Biostatistics and Biometrics1(3), 52–57.
  • Papastathopoulos, I., & Tawn, J. A. (2013). A generalised Student's t-distribution. Statistics & Probability Letters83(1), 70–77. https://doi.org/10.1016/j.spl.2012.09.002
  • Parzen, E. (1979). Nonparametric statistical data modeling. Journal of the American Statistical Association74(365), 105–121. https://doi.org/10.1080/01621459.1979.10481621
  • Rényi, A. (1961). On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics (Vol. 4, pp. 547–562). The University of California Press.
  • Ristić, M. M., & Balakrishnan, N. (2012). The gamma-exponentiated exponential distribution. Journal of Statistical Computation and Simulation82(8), 1191–1206. https://doi.org/10.1080/00949655.2011.574633
  • Rosco, J. F., Jones, M. C., & Pewsey, A. (2011). Skew t distributions via the sinh–arcsinh transformation. Test20(3), 630–652. https://doi.org/10.1007/s11749-010-0222-2
  • Said, K. K., Basalamah, D., Ning, W., & Gupta, A. (2018). The Kumaraswamy skew-t distribution and its related properties. Journal of Statistical Computation and Simulation47(8), 2409–2423. https://doi.org/10.1080/03610918.2017.1346801
  • Sharma, V. K. (2018). Topp–Leone normal distribution with application to increasing failure rate data. Journal of Statistical Computation and Simulation88(9), 1782–1803. https://doi.org/10.1080/00949655.2018.1447574
  • Sharma, V. K., Singh, S. V., & Shekhawat, K. (2022). Exponentiated Teissier distribution with increasing, decreasing and bathtub hazard functions. Journal of Applied Statistics49(2), 371–393. https://doi.org/10.1080/02664763.2020.1813694
  • Student (1908a). Probable error of a correlation coefficient. Biometrika6(2-3), 302–310. https://doi.org/10.1093/biomet/6.2-3.302
  • Student (1908b). The probable error of a mean. Biometrika6(1), 1–25. https://doi.org/10.2307/2331554
  • Yanev, G. P., & Ahsanullah, M. (2012). Characterizations of Student's t-distribution via regressions of order statistics. Statistics46(4), 429–435. https://doi.org/10.1080/02331888.2010.535904

To cite this article: Vikas Kumar Sharma, Komal Shekhawat & Princy Kaushik (08 Sep 2025): Lehmann-type family of location-scale t distributions with two degrees of freedom, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2540243

To link to this article: https://doi.org/10.1080/24754269.2025.2540243