Review Articles

Estimation of the mean using robust regression and probability proportional to size sampling

Mohamud Hussein Mohamud ,

Faculty of Economics, SIMAD University, Mogadishu, Somalia

laalaabte@simad.edu.so

Fartun Ahmed Mohamud

Faculty of Economics, SIMAD University, Mogadishu, Somalia

Pages | Received 21 Oct. 2024, Accepted 01 Jun. 2025, Published online: 20 Jun. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

In survey studies, mean estimation is a main issue, and regression estimators that use conventional regression coefficients are the preferred options. However, traditional estimates may exhibit undesirable behaviour when outliers are present in the data. For such a situation, robust regression tools are utilized. In this paper, inspired by recent developments, some new finite population mean estimators are proposed by utilizing the robust regression tools under probability proportional to size sampling with replacement scheme. Two real datasets are applied for measuring the percentage relative efficiency of the proposed estimators with respect to the traditional ordinary least square regression mean and adapted estimators. It is found that the proposed estimators are more efficient than the considered estimators. In light of this, the proposed estimators may be valuable and almost certainly increase the chance of obtaining additional accurate population mean estimates in the presence of outliers.

References

  • Ali, N., Ahmad, I., Hanif, M., & Shahzad, U. (2021). Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information. Communications in Statistics - Theory and Methods50(4), 979–992. https://doi.org/10.1080/03610926.2019.1645857
  • Ali, Nasir, Ahmad, Ishfaq., Shahzad, U., & Al-Noor, N. H. (2022). Some improved estimators for the mean estimation under stratified sampling by using transformations. Journal of Science and Arts22(2), 265–288. https://doi.org/10.46939/j.sci.arts
  • Ali, N., Ahmad, I., Shahzad, U., Al-Noor, N. H., & Hanif, M. (2022). Robust regression type estimators to determine the population mean under simple and two-stage random sampling techniques. Electronic Journal of Applied Statistical Analysis15(2), 357–373.
  • Cekim, H. O., & Kadilar, C. (2018). New families of unbiased estimators in stratified random sampling. Journal of Statistics and Management Systems21(8), 1481–1499. https://doi.org/10.1080/09720510.2018.1530176
  • Hampel, Frank R (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics42(6), 1887–1896. https://doi.org/10.1214/aoms/1177693054
  • Hansen, M. H., & Hurwitz, W. N. (1943). On the theory of sampling from a finite population. The Annals of Mathematical Statistics14(4), 333–362. https://doi.org/10.1214/aoms/1177731356
  • Huber, P. J. (1964). Robust estimation of a location parameter. The Annals of Mathematical Statistics35(1), 73–101. https://doi.org/10.1214/aoms/1177703732
  • Huber, P. J. (1973). Robust regression: Asymptotics, conjectures and Monte Carlo. The Annals of Mathematical Statistics1(5), 799–821.
  • Neyman, J. (1934). On the two different aspects of the representative method: The method of stratified sampling and the method of purposive selection. Journal of the Royal Statistical Society97(4), 558–625. https://doi.org/10.2307/2342192
  • Shahzad, U., Al-Noor, N. H., Hanif, M., & Sajjad, I. (2021). An exponential family of median based estimators for mean estimation with simple random sampling scheme. Communications in Statistics - Theory and Methods50(20), 4890–4899. https://doi.org/10.1080/03610926.2020.1725828
  • Shahzad, U., Al-Noor, N. H., Hanif, M., Sajjad, I., & Anas, M. M. (2022). Imputation based mean estimators in case of missing data utilizing robust regression and variance-covariance matrices. Communications in Statistics - Simulation and Computation51(8), 4276–4295. https://doi.org/10.1080/03610918.2020.1740266
  • Shahzad, U., Shahzadi, S., Afshan, N., Al-Noor, N. H., Alilah, D. A., Hanif, M., & Anas, M. M. (2021). Poisson regression-based mean estimator. Mathematical Problems in Engineering22, 1–6. https://doi.org/10.1155/2021/9769029
  • Singh, R., & Mangat, N. S. (1996). Elements of Survey Sampling. Springer Science & Business Media.
  • Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley.
  • Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics15(2), 642–656. https://doi.org/10.1214/aos/1176350366
  • Zaman, T. (2018). New family of estimators using two auxiliary attributes. International Journal of Advanced Research in Engineering and Management4(11), 11–16.
  • Zaman, T. (2019a). Efficient estimators of population mean using auxiliary attribute in stratified random sampling. Advances and Applications in Statistics56(2), 153–171. https://doi.org/10.17654/AS056020153
  • Zaman, T. (2019b). Improvement of modified ratio estimators using robust regression methods. Applied Mathematics and Computation348(3), 627–631. https://doi.org/10.1016/j.amc.2018.12.037
  • Zaman, T., & Bulut, H. (2019). Modified ratio estimators using robust regression methods. Communications in Statistics - Theory and Methods48(8), 2039–2048. https://doi.org/10.1080/03610926.2018.1441419
  • Zaman, T., & Bulut, H. (2020). Modified regression estimators using robust regression methods and covariance matrices in stratified random sampling. Communications in Statistics - Theory and Methods49(14), 3407–3420. https://doi.org/10.1080/03610926.2019.1588324
  • Zaman, T., Dunder, E., Audu, A., Alilah, D. A., Shahzad, U., & Hanif, M. (2021). Robust regression-ratio-type estimators of the mean utilizing two auxiliary variables: A simulation study. Mathematical Problems in Engineering27(3), 1–9. https://doi.org/10.1155/2021/6383927
  • Zaman, T., & Kadilar, C. (2019). Novel family of exponential estimators using information of auxiliary attribute. Journal of Statistics and Management Systems22(8), 1499–1509. https://doi.org/10.1080/09720510.2019.1621488
  • Zaman, T., & Kadilar, C. (2020). On estimating the population mean using auxiliary character in stratified random sampling. Journal of Statistics and Management Systems23(8), 1415–1426. https://doi.org/10.1080/09720510.2020.1723924
  • Zaman, T., & Toksoy, E. (2019). Improvement in estimating the population mean in simple random sampling using information on two auxiliary attributes and numerical application in agricultural engineering. Fresenius Environmental Bulletin28(6), 4584–4590.

To cite this article: Mohamud Hussein Mohamud & Fartun Ahmed Mohamud (20 Jun 2025): Estimation of the mean using robust regression and probability proportional to size sampling, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2516339

To link to this article: https://doi.org/10.1080/24754269.2025.2516339