Review Articles

Bayesian inference and prediction in multi-server Markovian queueing system with reverse balking: A simulation-based approach

Asmita Tamuli ,

Department of Statistics, Dibrugarh University, Dibrugarh, India

Dhruba Das

Department of Statistics, Dibrugarh University, Dibrugarh, India

dhrubadas16@gmail.com

Pages | Received 28 Dec. 2024, Accepted 22 Aug. 2025, Published online: 25 Sep. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

This article presents an in-depth exploration of classical and Bayesian inference methods to estimate the traffic intensity parameter, providing a comprehensive comparison of these two statistical paradigms in a novel multiserver Markovian queueing model (M/M/s) incorporating the phenomenon of reverse balking. The classical inference relies on maximum likelihood (ML) estimation, while the Bayesian approach leverages prior distributions and posterior analysis to enhance estimates. The results indicate that Bayesian methods offer better flexibility and precision compared to traditional ML estimates. Additionally, the predictive probabilities for the number of customers in the system are calculated for different hyper-parameter values of the prior through extensive simulation techniques. The results provide valuable insights for optimizing queue management and improving service efficiency in systems where reverse balking occurs. Moreover, a real-life example is presented to demonstrate the practical implementation of the proposed methodology. This work not only advances the theoretical understanding of queueing dynamics, but also offers practical implications for industries relying on efficient service mechanisms.

References

  • Acharya, S. K., & Singh, S. K. (2019). Asymptotic properties of maximum likelihood estimators from single server queues: A martingale approach. Communications in Statistics–Theory and Methods48(14), 3549–3557. https://doi.org/10.1080/03610926.2018.1477958
  • Basak, A., & Choudhury, A. (2021). Bayesian inference and prediction in single server M/M/1 queuing model based on queue length. Communications in Statistics–Simulation and Computation50(6), 1576–1588. https://doi.org/10.1080/03610918.2019.1586924
  • Basawa, I., & Prabhu, N. (1981). Estimation in single server queues. Naval Research Logistics Quarterly28(3), 475–487. https://doi.org/10.1002/nav.v28:3
  • Bingham, N. H., & Pitts, S. M. (1999). Non-parametric estimation for the M/G/∞ queue. Annals of the Institute of Statistical Mathematics51(1), 71–97. https://doi.org/10.1023/A:1003831118254
  • Bura, G. S., & Sharma, H. (2023). Maximum likelihood and Bayesian estimation on M/M/1 queueing model with balking. Communications in Statistics–Theory and Methods53(14), 5117–5145. https://doi.org/10.1080/03610926.2023.2208695
  • Choudhury, A., & Borthakur, A. C. (2008). Bayesian inference and prediction in the single server Markovian queue. Metrika67(3), 371–383. https://doi.org/10.1007/s00184-007-0138-3
  • Clarke, A. B. (1957). Maximum likelihood estimates in a simple queue. The Annals of Mathematical Statistics28(4), 1036–1040. https://doi.org/10.1214/aoms/1177706808
  • Cruz, F. R., Almeida, M. A., D'Angelo, M. F., & van Woensel, T. (2018). Traffic intensity estimation in finite Markovian queueing systems. Mathematical Problems in Engineering2018(2), 1–15. https://doi.org/10.1155/2018/3018758
  • Cruz, F. R., Quinino, R. D. C., & Ho, L. L. (2017). Bayesian estimation of traffic intensity based on queue length in a multi-server M/M/s queue. Communications in Statistics–Simulation and Computation46(9), 7319–7331. https://doi.org/10.1080/03610918.2016.1236953
  • Deepthi, V., & Jose, J. K. (2020). Bayesian estimation of M/Ek/1 queueing model using bivariate prior. American Journal of Mathematical and Management Sciences40(1), 88–105. https://doi.org/10.1080/01966324.2020.1835589
  • Goyal, T. L., & Harris, C. M. (1972). Maximum-likelihood estimates for queues with state-dependent service. Sankhya: The Indian Journal of Statistics, Series A34(1), 65–80.
  • Jain, N., Kumar, R., & Som, B. K. (2014). An M/M/1/N queuing system with reverse balking. American Journal of Operational Research4(2), 17–20.
  • Jyothsna, K., Laxmi, P. V., & Kumar, P. V. (2022). Optimization of a feedback working vacation queue with reverse balking and reverse reneging. Reliability: Theory & Applications17(1), 154–163.
  • Kumar, R., & Som, B. K. (2020). A multi-server queue with reverse balking and impatient customers. Pakistan Journal of Statistics36(2), 91–101.
  • McPhedran, R. C., Botten, L. C., Nicorovici, N. A. P., & John Zucker, I. (2007). Symmetrization of the Hurwitz zeta function and Dirichlet L functions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences463(2077), 281–301. https://doi.org/10.1098/rspa.2006.1762
  • Muddapur, M. (1972). Bayesian estimates of parameters in some queueing models. Annals of the Institute of Statistical Mathematics24(1), 327–331. https://doi.org/10.1007/BF02479762
  • Saikia, G., & Choudhury, A. (2021). A single server Markovian queuing system with limited buffer and reverse balking. Independent Journal of Management & Production12(7), 1774–1784. https://doi.org/10.14807/ijmp.v12i7.1471
  • Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing theory. (Vol. 399). John Wiley & Sons.
  • Singh, S. K., Acharya, S. K., Cruz, F. R., & Quinino, R. C. (2021). Estimation of traffic intensity from queue length data in a deterministic single server queueing system. Journal of Computational and Applied Mathematics398,113693. https://doi.org/10.1016/j.cam.2021.113693
  • Singh, S. K., Acharya, S. K., Cruz, F. R., & Quinino, R. C. (2023). Bayesian inference and prediction in an M/D/1 queueing system. Communications in Statistics–Theory and Methods52(24), 8844–8864. https://doi.org/10.1080/03610926.2022.2076120
  • Singh, S. K., Cruz, F. R., Gomes, E. S., & Banik, A. D. (2024). Classical and Bayesian estimations of performance measures in a single server Markovian queueing system based on arrivals during service times. Communications in Statistics–Theory and Methods53(10), 3517–3546. https://doi.org/10.1080/03610926.2022.2155789
  • Som, B. K., & Kumar, R. (2018). A heterogeneous queuing system with reverse balking and reneging. Journal of Industrial and Production Engineering35(1), 1–5. https://doi.org/10.1080/21681015.2017.1297739
  • Tamuli, A., Das, D., & Choudhury, A. (2024). Optimizing the performance of multiserver heterogeneous queueing systems with dynamic customer behaviour. Sankhya B86(2), 366–414. https://doi.org/10.1007/s13571-024-00340-0
  • Tamuli, A., Das, D., Choudhury, A., & Kushvaha, B. (2025). Optimal service design for heterogeneous queueing system with reverse balking and reneging. Operational Research25(2), 1–29. https://doi.org/10.1007/s12351-025-00911-7

To cite this article: Asmita Tamuli & Dhruba Das (25 Sep 2025): Bayesian inference and prediction in multi-server Markovian queueing system with reverse balking: A simulationbased approach, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2555032

To link to this article: https://doi.org/10.1080/24754269.2025.2555032