Review Articles

A new generalized binomial thinning-based INAR(1) process with Poisson–Lindley innovations

Emad-Eldin Aly Ahmed Aly ,

Department of Statistics and Operations Research, Kuwait University, Safat,Kuwait

Naushad Mamode Khan ,

Department of Economics and Statistics, University of Mauritius, Reduit, Mauritius

Muhammed Rasheed Irshad ,

Department of Statistics, Cochin University of Science and Technology, Cochin, Kerala, India

Veena D'cruz ,

Department of Statistics, Cochin University of Science and Technology, Cochin, Kerala, India

irshadmr@cusat.ac.in

Radhakumari Maya

Department of Statistics, Cochin University of Science and Technology, Cochin, Kerala, India

Pages | Received 13 Jan. 2025, Accepted 22 Aug. 2025, Published online: 25 Sep. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

This paper considers a new parameterization of the generalized binomial thinning operator that is to be incorporated in a simple ordered integer-valued autoregressive process (INAR(1)) with the Poisson–Lindley innovations. The statistical properties of the resulting INAR(1) process are explored along with the estimation procedures. Monte Carlo simulation experiments are executed to assess the consistency of the estimates under the new INAR(1) process. Finally, the importance of the proposed INAR(1) model is confirmed through the analysis of a real data set.

References

  • Al-Osh, M. A., & Aly, E. E. A. (1992). First order autoregressive time series with negative binomial and geometric marginals. Communications in Statistics-Theory and Methods21(9), 2483–2492. https://doi.org/10.1080/03610929208830925
  • Al-Osh, M. A., & Alzaid, A. A. (1987). First-order integer-valued autoregressive (INAR(1)) process. Journal of Time Series Analysis8(3), 261–275. https://doi.org/10.1111/j.1467-9892.1987.tb00438.x
  • Altun, E., Bhati, D., & Khan, N. M. (2021). A new approach to model the counts of earthquakes: INARPQX(1) process. SN Applied Sciences3(1), 1–17. https://doi.org/10.1007/s42452-020-04109-8
  • Aly, E. E. A., & Bouzar, N. (1994a). Explicit stationary distributions for some Galton-Watson processes with immigration. Stochastic Models10(2), 499–517. https://doi.org/10.1080/15326349408807305
  • Aly, E. E. A., & Bouzar, N. (1994b). On some integer-valued autoregressive moving average models. Journal of Multivariate Analysis50(1), 132–151. https://doi.org/10.1006/jmva.1994.1038
  • Aly, E. E. A., & Bouzar, N. (2019). Expectation thinning operators based on linear fractional probability generating functions. Journal of the Indian Society for Probability and Statistics20(1), 89–107. https://doi.org/10.1007/s41096-018-0056-x
  • Andersen, E. B. (1970). Asymptotic properties of conditional maximum-likelihood estimators. Journal of the Royal Statistical Society: Series B :Statistical Methodology32(2), 283–301. https://doi.org/10.1111/j.2517-6161.1970.tb00842.x
  • Billingsley, P. (1965). Ergodic Theory and Information (Vol. 1). Wiley.
  • Borges, P., Molinares, F. F., & Bourguignon, M. (2016). A geometric time series model with inflated-parameter Bernoulli counting series. Statistics & Probability Letters119, 264–272. https://doi.org/10.1016/j.spl.2016.08.012
  • Bu, R., & McCabe, B. (2008). Model selection, estimation and forecasting in INAR(p) models: A likelihood-based Markov chain approach. International Journal of Forecasting24(1), 151–162. https://doi.org/10.1016/j.ijforecast.2007.11.002
  • Bu, R., McCabe, B., & Hadri, K. (2008). Maximum likelihood estimation of higher-order integer-valued autoregressive processes. Journal of Time Series Analysis29(6), 973–994. https://doi.org/10.1111/j.1467-9892.2008.00590.x
  • Cramér, H., & Wold, H. (1936). Some theorems on distribution functions. Journal of the London Mathematical Societys1-11(4), 290–294. https://doi.org/10.1112/jlms/s1-11.4.290
  • Eliwa, M. S., Altun, E., El-Dawoody, M., & El-Morshedy, M. (2020). A new three-parameter discrete distribution with associated INAR(1) process and applications. IEEE Access8, 91150–91162. https://doi.org/10.1109/ACCESS.2020.2993593
  • Ghitany, M. E., & Al-Mutairi, D. K. (2009). Estimation methods for the discrete Poisson-Lindley distribution. Journal of Statistical Computation and Simulation79(1), 1–9. https://doi.org/10.1080/00949650701550259
  • Harvey, A. C., & Fernandes, C. (1989). Time series models for count or qualitative observations. Journal of Business & Economic Statistics7(4), 407–417. https://doi.org/10.1080/07350015.1989.10509750
  • Huang, J., & Zhu, F. (2021). A new first-order integer-valued autoregressive model with Bell innovations. Entropy23(6), 1-17. https://doi.org/10.3390/e23060713
  • Irshad, M. R., Chesneau, C., D'cruz, V., & Maya, R. (2021). Discrete pseudo Lindley distribution: Properties, estimation and application on INAR(1) process. Mathematical and Computational Applications26(4), 1-22. https://doi.org/10.3390/mca26040076
  • Jazi, M. A., Jones, G., & Lai, C. D. (2012). First-order integer valued AR processes with zero inflated Poisson innovations. Journal of Time Series Analysis33(6), 954–963. https://doi.org/10.1111/j.1467-9892.2012.00809.x
  • Kang, Y., Wang, D., & Yang, K. (2020). Extended binomial AR(1) processes with generalized binomial thinning operator. Communications in Statistics-Theory and Methods49(14), 3498–3520. https://doi.org/10.1080/03610926.2019.1589519
  • Karlsen, H., & Tjøstheim, D. (1988). Consistent estimates for the NEAR(2) and NLAR(2) time series models. Journal of the Royal Statistical Society: Series B (Methodological)50(2), 313–320. https://doi.org/10.1111/j.2517-6161.1988.tb01730.x
  • Khoo, W. C., Ong, S. H., & Biswas, A. (2017). Modeling time series of counts with a new class of INAR(1) model. Statistical Papers58(2), 393–416. https://doi.org/10.1007/s00362-015-0704-0
  • Liu, Z., & Zhu, F. (2020). A new extension of thinning-based integer-valued autoregressive models for count data. Entropy23(1), 1-17. https://doi.org/10.3390/e23010062
  • Lívio, T., Khan, N. M., Bourguignon, M., & Bakouch, H. S. (2018). An INAR(1) model with Poisson-Lindley innovations. Economics Bulletin38(3), 1505–1513.
  • Maya, R., Jodrá, P, Aswathy, S, & Irshad, M. R. (2024) The discrete new XLindley distribution and the associated autoregressive process. International Journal of Data Science and Analytics20, 1767–1793. https://doi.org/10.1007/s41060-024-00563-4
  • McKenzie, E. (1985) Some simple models for discrete variate time series. JAWRA Journal of the American Water Resources Association21(4), 645–650. https://doi.org/10.1111/j.1752-1688.1985.tb05379.x
  • Ristić, M. M., Bakouch, H. S., & Nastić, A. S. (2009). A new geometric first-order integer-valued autoregressive (NGINAR(1)) process. Journal of Statistical Planning and Inference139(7), 2218–2226. https://doi.org/10.1016/j.jspi.2008.10.007
  • Rostami, A., Mahmoudi, E, & Roozegar, R (2018) A new integer valued AR(1) process with Poisson-Lindley innovations. arXiv: 1802.00994
  • Sankaran, M. (1970). The discrete Poisson-Lindley distribution. Biometrics26(1), 145–149. https://doi.org/10.2307/2529053
  • Schweer, S., & Weiß, C. H. (2014). Compound Poisson INAR(1) processes: Stochastic properties and testing for overdispersion. Computational Statistics & Data Analysis77, 267–284. https://doi.org/10.1016/j.csda.2014.03.005
  • Steutel, F. W., & van Harn, K. (1979). Discrete analogues of self-decomposability and stability. The Annals of Probability7(5), 893–899. https://doi.org/10.1214/aop/1176994950
  • Weiß, C. H. (2008) Thinning operations for modelling time series of counts – a survey. AStA Advances in Statistical Analysis92, 319–341. https://doi.org/10.1007/s10182-008-0072-3
  • Yang, K., Kang, Y, Wang, D, Li, H, & Diao, Y. (2019) Modeling overdispersed or underdispersed count data with generalized Poisson integer-valued autoregressive processes. Metrika82, 863–889. https://doi.org/10.1007/s00184-019-00714-9
  • Zhang, H., Wang, D., & Zhu, F. (2010). Inference for INAR(p) processes with signed generalized power series thinning operator. Journal of Statistical Planning and Inference140(3), 667–683. https://doi.org/10.1016/j.jspi.2009.08.012

To cite this article: Emad-Eldin Aly Ahmed Aly, Naushad Mamode Khan, Muhammed Rasheed Irshad, Veena D'cruz & Radhakumari Maya (25 Sep 2025): A new generalized binomial thinningbased INAR(1) process with Poisson–Lindley innovations, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2557723

To link to this article: https://doi.org/10.1080/24754269.2025.2557723