Review Articles

Bias correction of partial-error in variables in a Poisson regression model

Kentarou Wada ,

Department of Applied Mathematics, Tokyo University of Science, Tokyo, Japan

wadaken5269@gmail.com

Takeshi Kurosawa

Department of Applied Mathematics, Tokyo University of Science, Tokyo, Japan

Pages | Received 13 Jul. 2024, Accepted 09 Nov. 2025, Published online: 12 Dec. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

Previous studies on Poisson regression models with error-in-variables (EIV) assumed either a univariate EIV structure or multivariate EIV framework with all explanatory variables subject to error where the explanatory variable and error vectors are restricted to multivariate normal distributions. This study assumes that the explanatory variable and error vectors follow general distributions, with measurement error affecting only a subset of variables in the multivariate EIV framework. We define the partial-error naive estimator, derive its asymptotic bias and mean squared error, and propose a consistent estimator for the true parameter by correcting this bias. We also investigate a simplification of the new estimator when all components of the explanatory variable and error vectors are independent. This method is applicable even when the explanatory variable or error vectors follow a mixed distribution. Simulation studies and real data analysis are presented as illustrative examples to compare the performance of the partial-error naive estimator with that of the new estimator.

Your browser may not support PDF viewing. Please click to download the file.

References

  • Box, G. E. P. (1963). The effects of errors in the factor levels and experimental design. Technometrics5(2), 247–262. https://doi.org/10.1080/00401706.1963.10490078
  • Burr, D. (1988). On errors-in-variables in binary regression-Berkson case. Journal of the American Statistical Association83(403), 739–743.
  • Eshima, N., & Tabata, M. (2010). Entropy coefficient of determination for generalized linear models. Computational Statistics & Data Analysis54(5), 1381–1389. https://doi.org/10.1016/j.csda.2009.12.003
  • Fuller, W. A. (1987). Measurement Error Models. Wiley.
  • Geary, R. C. (1953). Non-linear functional relationship between two variables when one variable is controlled. Journal of the American Statistical Association48(261), 94–103. https://doi.org/10.1080/01621459.1953.10483458
  • Guo, J. Q., & Li, T. (2002). Poisson regression models with errors-in-variables: Implication and treatment. Journal of Statistical Planning and Inference104(2), 391–401. https://doi.org/10.1016/S0378-3758(01)00250-6
  • Huwang, L., & Huang, Y. H. (2000). On errors-in-variables in polynomial regression-Berkson case. Statistica Sinica10(3), 923–936.
  • Jiang, F., & Ma, Y. (2022). Poisson regression with error corrupted high dimensional features. Statistica Sinica32(4), 2023–2046.
  • Kenya National Bureau of Statistics (2019). FinAccess Survey 2019. https://knbs.or.ke(open in a new window)
  • Kukush, A., & Schneeweiss, H. (2000). A comparison of asymptotic covariance matrices of adjusted least squares and structural least squares in error ridden polynomial regression. Sonderforschungsbereich386, 1–23.
  • Kukush, A., Schneeweiss, H., & Wolf, R. (2004). Three estimators for the Poisson regression model with measurement errors. Statistical Papers45(3), 351–368. https://doi.org/10.1007/BF02777577
  • Kukush, A., & Shklyar, S. (2002). Comparison of three estimators in Poisson errors-in-variables model with one covariate. Sonderforschungsbereich386, 1–23.
  • Kurosawa, T., Hui, F. K. C., Welsh, A. H., Shinmura, K., & Eshima, N. (2020). On goodness-of-fit measures for Poisson regression models. Australian & New Zealand Journal of Statistics62(3), 340–366. https://doi.org/10.1111/anzs.v62.3
  • McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (Ed.), Frontiers in Econometrics (pp. 105–142). Academic Press.
  • Nakamura, T. (1990). Corrected score function for errors-in-variables models: Methodology and application to generalized linear models. Biometrika77(1), 127–137. https://doi.org/10.1093/biomet/77.1.127
  • Rosenthal, J. S. (2025). A First Look at Rigorous Probability Theory (2nd ed.). World Scientific Publishing.
  • Rudin, W. (1976). Principles of Mathematical Analysis (3rd ed.). McGraw-Hill.
  • Shklyar, S., & Schneeweiss, H. (2005). A comparison of asymptotic covariance matrices of three consistent estimators in the Poisson regression model with measurement errors. Journal of Multivariate Analysis94(2), 250–270. https://doi.org/10.1016/j.jmva.2004.05.002
  • Shklyar, S., Schneeweiss, H., & Kukush, A. (2007). Quasi score is more efficient than corrected score in a polynomial measurement error model. Metrika65(3), 275–295. https://doi.org/10.1007/s00184-006-0076-5
  • van der Vaart, A. W. (2012). Asymptotic Statistics. Cambridge University Press.
  • Wada, K., & Kurosawa, T. (2023). The naive estimator of a Poisson regression model with a measurement error. Journal of Risk and Financial Management16(3), 16–30. https://doi.org/10.3390/jrfm16030186

To cite this article: Kentarou Wada & Takeshi Kurosawa (12 Dec 2025): Bias correction of partial-error in variables in a Poisson regression model, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2588849

To link to this article: https://doi.org/10.1080/24754269.2025.2588849