Review Articles

Approximate Bayesian inference based on INLA algorithm

Pingping Wang ,

Department of Statistics, Nanjing University of Finance and Economics, Nanjing, People's Republic of China

Wei Zhao ,

Academic Journal Center, East China Normal University, Shanghai, People's Republic of China

Yincai Tang

KLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, People's Republic of China

yctang@stat.ecnu.edu.cn

Pages | Received 15 Aug. 2025, Accepted 09 Nov. 2025, Published online: 19 Dec. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

The integrated nested Laplace approximation (INLA) algorithm provides a computationally efficient approach for approximate Bayesian inference, overcoming the limitations of traditional Markov chain Monte Carlo (MCMC) methods. This paper reviews INLA algorithm and provides a systematic review of six key books that explore the theoretical foundations, practical implementations, and diverse applications of INLA. These six books cover spatial and spatio-temporal modelling, general Bayesian inference, SPDE-based spatial analysis, geospatial health data, regression modelling, and dynamic time series. In addition, these books highlight the versatility of INLA method in handling complex models while maintaining high computational efficiency. This paper begins with an introduction to the INLA method and algorithm, followed by a systematic review of six key publications in the field.

Your browser may not support PDF viewing. Please click to download the file.

References

  • Abdul-Fattah, E., Van Niekerk, J., & Rue, H. (2023). INLA+: Approximate Bayesian inference for non-sparse models using HPC. Preprint. p. 2311.08050.
  • Alvares, D., Van Niekerk, J., Krainski, E. T., Rue, H., & Rustand, D. (2024). Bayesian survival analysis with INLA. Statistics in Medicine43(20), 3975–4010. https://doi.org/10.1002/sim.v43.20
  • Attias, H. (1999). A variational Bayesian framework for graphical models. In Proceedings of the 13th International Conference on Neural Information Processing Systems, NIPS'99, Cambridge, MA, USA (pp. 209–215). MIT Press.
  • Bachl, F. E., Lindgren, F., Borchers, D. L., & Illian, J. B. (2019). inlabru: An R package for Bayesian spatial modelling from ecological survey data. Methods in Ecology and Evolution10(6), 760–766. https://doi.org/10.1111/mee3.2019.10.issue-6
  • Blangiardo, M., & Cameletti, M. (2015). Spatial and Spatio-Temporal Bayesian Models with R-INLA. John Wiley & Sons.
  • Bolin, D., Simas, A. B., & Xiong, Z. (2024). Covariance-based rational approximations of fractional SPDEs for computationally efficient Bayesian inference. Journal of Computational and Graphical Statistics33(1), 64–74. https://doi.org/10.1080/10618600.2023.2231051
  • Gelfand, A. E., & Smith, A. F. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association85(410), 398–409. https://doi.org/10.1080/01621459.1990.10476213
  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine IntelligencePAMI-6(6), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596
  • Gómez-Rubio, V. (2020). Bayesian Inference with INLA. Chapman & Hall/CRC.
  • Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97
  • Krainski, E., Gómez-Rubio, V., Bakka, H., Lenzi, A., Castro-Camilo, D., Simpson, D., Lindgren, F., & Rue, H. (2018). Advanced Spatial Modeling with Stochastic Partial Differential Equations Using R and INLA. Chapman & Hall/CRC.
  • Lindgren, F., Rue, H., & Lindström, J. (2011). An explicit link between Gaussian fields and Gaussian Markov random fields: The stochastic partial differential equation approach. Journal of the Royal Statistical Society73(4), 423–498. https://doi.org/10.1111/j.1467-9868.2011.00777.x
  • Moraga, P. (2019). Geospatial Health Data: Modeling and Vsualization with R-INLA and Shiny. Chapman & Hall/CRC.
  • Peterson, C. (1987). A mean field theory learning algorithm for neural network. Complex Systems1, 995–1019.
  • Ravishanker, N., Raman, B., & Soyer, R. (2022). Dynamic Time Series Models Using R-INLA: An Applied Perspective. Chapman & Hall/CRC.
  • Robert, C. P., Casella, G., & Casella, G. (2004). Monte Carlo Statistical Methods. 2nd ed. Springer.
  • Robert, C. P., Elvira, V., Tawn, N., & Wu, C. (2018). Accelerating MCMC algorithms. Wiley Interdisciplinary Reviews: Computational Statistics10(5), e1435. https://doi.org/10.1002/wics.2018.10.issue-5
  • Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics12(4), 1151–1172. https://doi.org/10.1214/aos/1176346785
  • Rue, H., & Held, L. (2005). Gaussian Markov Random Fields: Theory and Applications. Chapman & Hall/CRC.
  • Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology71(2), 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
  • Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., & Lindgren, F. K. (2017). Bayesian computing with INLA: A review. Annual Review of Statistics and Its Application4(1), 395–421. https://doi.org/10.1146/statistics.2017.4.issue-1
  • Sunnåker, M., Busetto, A. G., Numminen, E., Corander, J., Foll, M., & Dessimoz, C. (2013). Approximate Bayesian computation. PLOS Computational Biology9(1), e1002803. https://doi.org/10.1371/journal.pcbi.1002803
  • Van Niekerk, J., Krainski, E., Rustand, D., & Rue, H. (2023). A new avenue for Bayesian inference with INLA. Computational Statistics & Data Analysis181,107692. https://doi.org/10.1016/j.csda.2023.107692
  • Wang, X., Yue, Y. R., & Faraway, J. J. (2018). Bayesian Regression Modeling with INLA. Chapman & Hall/CRC.
  • Winn, J., & Bishop, C. M. (2005). Variational message passing. Journal of Machine Learning Research6(23), 661–694.

To cite this article: Pingping Wang, Wei Zhao & Yincai Tang (19 Dec 2025): Approximate Bayesian inference based on INLA algorithm, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2588859

To link to this article: https://doi.org/10.1080/24754269.2025.2588859