Review Articles

Study and improvement of a multivariate covariance control chart based on the Sparse Group Lasso penalty

Jun Hu ,

School of Mathematical Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China

Hongwei Li ,

School of Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai, People's Republic of China

Chunjie Wu ,

School of Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai, People's Republic of China

wumaths@mail.shufe.edu.cn

Jialin Wu

School of Statistics and Data Science, Shanghai University of Finance and Economics, Shanghai, People's Republic of China

Pages | Received 28 Jun. 2025, Accepted 09 Dec. 2025, Published online: 22 Dec. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

Traditional multivariate parametric control charts often perform inadequately in detecting shifts in the covariance matrix when the data deviate from normality. In this paper, we propose a multivariate nonparametric exponentially weighted moving average (SGLGEWMA) control chart, incorporating a Sparse Group Lasso penalty, which is capable of detecting shifts in the covariance matrix across a wide range of data types, including discrete, continuous, and mixed distributions. The proposed approach projects multivariate data into a Euclidean space and then computes an approximate Alt's likelihood ratio, regularized via the Sparse Group Lasso. The resulting EWMA statistic monitors process shifts. Monte Carlo simulations demonstrate that SGLGEWMA outperforms both the Lasso-based LGShewhart and the Ridge-based RGEWMA control charts under various distributions, with enhanced efficacy in high-dimensional scenarios. Sensitivity analyses are performed on the tuning parameters (𝜆1, 𝜆2) and smoothing parameter ρ, to evaluate their impact on monitoring performance. Additionally, a simulation study and an illustrative example involving covariance monitoring in wafer semiconductor manufacturing are presented to demonstrate the practical application of the proposed chart. Empirical results confirm that the proposed control chart promptly identifies abnormal fluctuations and issues timely alerts, highlighting both its theoretical significance and practical utility.

Your browser may not support PDF viewing. Please click to download the file.

References

  • Adegoke, N. A., Ajadi, J. O., Mukherjee, A., & Abbasi, S. A. (2022). Nonparametric multivariate covariance chart for monitoring individual observations. Computers & Industrial Engineering167, Article 108025. https://doi.org/10.1016/j.cie.2022.108025
  • Ajadi, J. O., Zwetsloot, I. M., & Tsui, K. L. (2021). A new robust multivariate EWMA dispersion control chart for individual observations. Mathematics9(9), 1038. https://doi.org/10.3390/math9091038
  • Alt, F. B. (1984). Multivariate quality control. In S. Kotz, N. L. Johnsonand & C. B. Read (Eds.), The Encyclopedia of Statistical Sciences (pp. 110–122). John Wiley.
  • Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning3(1), 1–122.
  • Chakraborty, N., & Finkelstein, M. (2024). Distribution-free multivariate process monitoring: A rank-energy statistic-based approach. Quality and Reliability Engineering International40(7), 4068–4087. https://doi.org/10.1002/qre.v40.7
  • Chowdhury, S., Mukherjee, A., & Chakraborti, S. (2014). A new distribution-free control chart for joint monitoring of unknown location and scale parameters of continuous distributions. Quality and Reliability Engineering International30(2), 191–204. https://doi.org/10.1002/qre.v30.2
  • Danaher, P., Wang, P., & Witten, D. M. (2014). The joint graphical Lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society Series B: Statistical Methodology76(2), 373–397. https://doi.org/10.1111/rssb.12033
  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical Lasso. Biostatistics (Oxford, England)9(3), 432–441. https://doi.org/10.1093/biostatistics/kxm045
  • Guo, J., Levina, E., Michailidis, G., & Zhu, J. (2011). Joint estimation of multiple graphical models. Biometrika98(1), 1–15. https://doi.org/10.1093/biomet/asq060
  • Hawkins, D. M., & Maboudou-Tchao, E. M. (2008). Multivariate exponentially weighted moving covariance matrix. Technometrics50(2), 155–166. https://doi.org/10.1198/004017008000000163
  • Hoefling, H. (2010). A path algorithm for the fused Lasso signal approximator. Journal of Computational and Graphical Statistics19(4), 984–1006. https://doi.org/10.1198/jcgs.2010.09208
  • Hotelling, H. (1947). Multivariate quality controlillustrated by the air testing of sample bombsights. In C. Eisenhart, M. W. Hastayand & W. A. Wallis (Eds.), Techniques of statistical analysis (pp. 111–184). McGraw-Hill.
  • Huwang, L., Yeh, A. B., & Wu, C. W. (2007). Monitoring multivariate process variability for individual observations. Journal of Quality Technology39(3), 258–278. https://doi.org/10.1080/00224065.2007.11917692
  • Kim, J., Abdella, G. M., Kim, S., Al-Khalifa, K. N., & Hamouda, A. M. (2019). Control charts for variability monitoring in high-dimensional processes. Computers & Industrial Engineering130, 309–316. https://doi.org/10.1016/j.cie.2019.02.012
  • Li, J., Zhang, X., & Jeske, D. R. (2013). Nonparametric multivariate CUSUM control charts for location and scale changes. Journal of Nonparametric Statistics25(1), 1–20. https://doi.org/10.1080/10485252.2012.726992
  • Li, S., Hsu, L., Peng, J., & Wang, P. (2013). Bootstrap inference for network construction with an application to a breast cancer microarray study. The Annals of Applied Statistics7(1), 391–417. https://doi.org/10.1214/12-AOAS589
  • Liang, W., Xiang, D., Pu, X., Li, Y., & Jin, L. (2019). A robust multivariate sign control chart for detecting shifts in covariance matrix under the elliptical directions distributions. Quality Technology & Quantitative Management16(1), 113–127. https://doi.org/10.1080/16843703.2017.1372852
  • Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association90(432), 1380–1387. https://doi.org/10.1080/01621459.1995.10476643
  • Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics34(1), 46–53. https://doi.org/10.2307/1269551
  • Lucas, J. M., & Saccucci, M. S. (1990). Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics32(1), 1–12. https://doi.org/10.1080/00401706.1990.10484583
  • Maboudou-Tchao, E. M., & Agboto, V. (2013). Monitoring the covariance matrix with fewer observations than variables. Computational Statistics & Data Analysis64, 99–112. https://doi.org/10.1016/j.csda.2013.02.028
  • Maboudou-Tchao, E. M., & Diawara, N. (2013). A Lasso chart for monitoring the covariance matrix. Quality Technology & Quantitative Management10(1), 95–114. https://doi.org/10.1080/16843703.2013.11673310
  • Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society Series B: Statistical Methodology72(4), 417–473. https://doi.org/10.1111/j.1467-9868.2010.00740.x
  • Montgomery, D. C., & Wadsworth, H. (1972). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions (Vol. 26, pp. 427–435).
  • Mukherjee, A., & Chakraborti, S. (2012). A distribution-free control chart for the joint monitoring of location and scale. Quality and Reliability Engineering International28(3), 335–352. https://doi.org/10.1002/qre.v28.3
  • Reynolds Jr, M. R., & Cho, G. Y. (2006). Multivariate control charts for monitoring the mean vector and covariance matrix. Journal of Quality Technology38(3), 230–253. https://doi.org/10.1080/00224065.2006.11918612
  • Song, Z., Mukherjee, A., & Zhang, J. (2021). Some robust approaches based on copula for monitoring bivariate processes and component-wise assessment. European Journal of Operational Research289(1), 177–196. https://doi.org/10.1016/j.ejor.2020.07.016
  • Woodall, W. H., & Ncube, M. M. (1985). Multivariate CUSUM quality-control procedures. Technometrics27(3), 285–292. https://doi.org/10.1080/00401706.1985.10488053
  • Xu, F., & Deng, X. (2023). Joint diagnosis of process mean vector and covariance matrix for multivariate statistical process control. Computers & Industrial Engineering179, Article 109222. https://doi.org/10.1016/j.cie.2023.109222
  • Yeh, A. B., Huwang, L., & C. W. Wu (2005). A multivariate EWMA control chart for monitoring process variability with individual observations. IIE Transactions37(11), 1023–1035. https://doi.org/10.1080/07408170500232263
  • Yeh, A. B., Li, B., & Wang, K. (2012). Monitoring multivariate process variability with individual observations via penalised likelihood estimation. International Journal of Production Research50(22), 6624–6638. https://doi.org/10.1080/00207543.2012.676684
  • Zhang, G., & Chang, S. I. (2008). Multivariate EWMA control charts using individual observations for process mean and variance monitoring and diagnosis. International Journal of Production Research46(24), 6855–6881. https://doi.org/10.1080/00207540701197028
  • Zhang, J., Li, Z., & Wang, Z. (2010). A multivariate control chart for simultaneously monitoring process mean and variability. Computational Statistics & Data Analysis54(10), 2244–2252. https://doi.org/10.1016/j.csda.2010.03.027
  • Zou, C., Wang, Z., & Tsung, F. (2012). A spatial rank-based multivariate EWMA control chart. Naval Research Logistics (NRL)59(2), 91–110. https://doi.org/10.1002/nav.v59.2

To cite this article: Jun Hu, Hongwei Li, Chunjie Wu & Jialin Wu (22 Dec 2025): Study and improvement of a multivariate covariance control chart based on the Sparse Group Lasso penalty, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2603538

To link to this article: https://doi.org/10.1080/24754269.2025.2603538