Review Articles

Optimal orthogonal block designs for three-component symmetric general blending models in mixture experiment

Jiawei Bao ,

School of Mathematical Sciences, Soochow University, Suzhou, People's Republic of China

Yu Tang

School of Future Science and Engineering, Soochow University, Suzhou, People's Republic of China

ytang@suda.edu.cn

Pages | Received 10 Apr. 2025, Accepted 09 Nov. 2025, Published online: 05 Dec. 2025,
  • Abstract
  • Full Article
  • References
  • Citations

In mixture experiments, the observed response is determined by the relative proportions of the components, consequently rendering the experimental region a simplex. This paper focuses primarily on the optimal designs of mixture experiments that involve process variables. Prior research has extensively delved into optimal orthogonal block designs for some classic mixture models with process variables. Based on the framework of general blending models, this paper proposes a class of symmetric linear mixture models, which can be regarded as a generalization of many existing ones. Under the orthogonal blocking conditions, orthogonal block designs are devised through Latin squares in the presence of process variables. The D-, A-, and E-optimality criteria are utilized to obtain optimal designs at the boundary of the simplex in the case of 3 components. As the values of the exponents change, numerically derived optimal design points are presented to illustrate the pattern of their variations, and to verify the consistency of the results with previous research on some specific symmetric general blending models.

Your browser may not support PDF viewing. Please click to download the file.

References

  • Aggarwal, M. L., Sarin, V., & Singh, P. (2002). Optimal orthogonal designs in two blocks for Becker's mixture models in three and four components. Statistics & Probability Letters59(4), 385–396. https://doi.org/10.1016/S0167-7152(02)00237-7
  • Aggarwal, M. L., Singh, P., Sarin, V., & Husain, B. (2013). Optimal orthogonal block designs for four-mixture components in two blocks based on F-squares for Becker's models and K-model. Statistics47(5), 1003–1021. https://doi.org/10.1080/02331888.2012.667102
  • Atkinson, A. C., Donev, A. N., & Tobias, R. D. (2007). Optimum experimental designs, with SAS. Oxford University Press.
  • Bao, J. (2021). Statistical analysis of data from mixtures experiments [Unpublished master's thesis]. University of Manchester.
  • Becker, N. G. (1968). Models for the response of a mixture. Journal of the Royal Statistical Society: Series B - Statistical Methodology30(2), 349–358. https://doi.org/10.1111/j.2517-6161.1968.tb00735.x
  • Bose, R. C. (1938). On the application of the properties of galois fields to the problem of construction of hyper- Græco- Latin squares on the application of the properties of Galois fields to the problem of construction of hyper- Græco- Latin squares. Sankhy: The Indian Journal of Statistics (1933–1960)3(4), 323–338.
  • Brown, L., Donev, A. N., & Bissett, A. C. (2015). General blending models for data from mixture experiments. Technometrics57(4), 449–456. https://doi.org/10.1080/00401706.2014.947003
  • Chan, L. Y. (1999). Optimal orthogonal block designs for a quadratic mixture model for three components. Journal of Applied Statistics26(1), 19–34. https://doi.org/10.1080/02664769922629
  • Cornell, J. A. (2002). Experiments with mixtures: Design, models and the analysis of mixture data (3rd Ed.) John Wiley & Sons Ltd.
  • Czitrom, V. (1988). Mixture experiments with process variables: D-optimal orthogonal experimental designs. Communications in Statistics - Theory and Methods17(1), 105–121. https://doi.org/10.1080/03610928808829613
  • Dette, H., Liu, X., & Yue, R. (2022). Design admissibility and de la Garza phenomenon in multifactor experiments. The Annals of Statistics50(3), 1247–1265. https://doi.org/10.1214/21-AOS2147
  • Donev, A. N. (1989). Design of experiments with both mixture and qualitative factors. Journal of the Royal Statistical Society. Series B - Statistical Methodology51(2), 297–302. https://doi.org/10.1111/j.2517-6161.1989.tb01767.x
  • Duarte, B. P. M., Atkinson, A. C., Granjo, J. F., & Oliveira, N. M. (2021). Optimal design of mixture experiments for general blending models. Chemometrics and Intelligent Laboratory Systems217,104400. https://doi.org/10.1016/j.chemolab.2021.104400
  • Gong, Z., Zhu, X., & Zhang, C. (2022). D-optimal design of the additive mixture model with multi-response. Mathematical Biosciences and Engineering19(5), 4737–4748. https://doi.org/10.3934/mbe.2022221
  • Kiefer, J. (1959). Optimum experimental designs. Journal of the Royal Statistical Society. Series B - Statistical Methodology21(2), 272–304. https://doi.org/10.1111/j.2517-6161.1959.tb00338.x
  • Lewis, S. M., Draper, N. R., Dean, A. M., & Prescott, P. (1994). Mixture designs for q components in orthogonal blocks. Journal of the Royal Statistical Society. Series B - Statistical Methodology56(3), 457–467. https://doi.org/10.1111/j.2517-6161.1994.tb01992.x
  • Li, J., Li, G., & Zhang, C. (2024). Weighted R-efficiency optimal design for experiments with mixture. Communications in Statistics - Theory and Methods53(4), 1241–1256. https://doi.org/10.1080/03610926.2022.2096901
  • Li, Y., Raghavarao, D., & Chervoneva, I. (2017). Extensions of D-optimal minimal designs for symmetric mixture models. Communications in Statistics - Theory and Methods46(5), 2542–2558. https://doi.org/10.1080/03610926.2014.988258
  • Liu, S., & Neudecker, H. (1997). Experiments with mixtures: Optimal allocations for Becker's models. Metrika45(1), 53–66. https://doi.org/10.1007/BF02717093
  • Mario, B., & Peter, G. (2023). Bayesian D- and I-optimal designs for choice experiments involving mixtures and process variables. Food Quality and Preference110,104928. https://doi.org/10.1016/j.foodqual.2023.104928
  • Nigam, A. K. (1970). Block designs for mixture experiments. The Annals of Mathematical Statistics41(6), 1861–1869. https://doi.org/10.1214/aoms/1177696687
  • Nigam, A. K. (1976). Correction to “Block designs for mixture experiments”. The Annals of Statistics4(6), 1294–1295. https://doi.org/10.1214/aos/1176343663
  • Pang, S., Wang, Y., & Ai, M. (2022). Construction of orthogonal arrays without interaction columns. Acta Mathematicae Applicatae Sinica - English Series38(1), 159–168. https://doi.org/10.1007/s10255-022-1063-y
  • Peter, G., Bradley, J., & Utami, S. (2016). I- optimal design of mixture experiments. Journal of the American Statistical Association111(514), 899–911. https://doi.org/10.1080/01621459.2015.1136632
  • Pukelsheim, F. (2006). Optimal design of experiments. Society for industrial and applied mathematics.
  • Scheffé, H. (1958). Experiments with mixtures. Journal of the Royal Statistical Society. Series B - Statistical Methodology20(2), 344–360. https://doi.org/10.1111/j.2517-6161.1958.tb00299.x
  • Scheffé, H. (1963). The simplex- centroid design for experiments with mixtures. Journal of the Royal Statistical Society. Series B - Statistical Methodology25(2), 235–263. https://doi.org/10.1111/j.2517-6161.1963.tb00506.x
  • Sinha, B. K., Mandal, N. K., Pal, M., & Das, P. (2014). Miscellaneous topics: Robust mixtures, random regression coefficients, multi-response experiments, mixture–amount models, blocking in mixture designs. In Optimal mixture experiments (pp. 161–200). Springer India.
  • Wang, L., Sun, F., Lin, D. K., & Liu, M. (2018). Construction of orthogonal symmetric Latin hypercube designs. Statistica Sinica28, 1503–1520.
  • Wu, C. F. J., & Hamada, M. S. (2021). Experiments: planning, analysis, and optimization (3rd Ed.). John Wiley & Sons Inc.
  • Zhou, X., Wang, Y., & Yue, R. (2024). Optimal designs for linear regression models with skew-normal errors. Statistics58(6), 1488–1505. https://doi.org/10.1080/02331888.2024.2410802

To cite this article: Jiawei Bao & Yu Tang (05 Dec 2025): Optimal orthogonal block designs for three-component symmetric general blending models in mixture experiment, Statistical Theory and Related Fields, DOI: 10.1080/24754269.2025.2588850

To link to this article: https://doi.org/10.1080/24754269.2025.2588850