[1] ASIMIT V A, BADESCU A, VERDONCK T. Optimal risk transfer under quantile-Based risk measures [J]. Social Science Electronic Publishing, 2013, 53(1): 252-265.
[2] 欧阳资生. 厚尾分布的极值分位数估计与极值风险测度研究 [J]. 数理统计与管理, 2008, 27(1): 70-75.
[3] 谢佳利, 杨善朝, 梁鑫. VaR~样本分位数估计的偏差改进 [J]. 数量经济技术经济研究, 2008, 12: 139-148.
[4] GELMAN A, CARLIN J B, STERN H S, et al. Bayesian Data Analysis [M]. New York: Chapman-Hall, 1995.
[5] SZEGO G. Measures of risk [J]. European Journal of Operational Research, 2005, 163: 5-19.
[6] DENUIT M, DHAENE J, GOOVAERTS M, et al. Actuarial Theory for Dependent Risks [M]. [S.l.]: John Wiley Sons Ltd, 2005.
[7] RAMSAY C M. A solution to the ruin problem for pareto distributions [J]. Insurance: Mathematics and Economics, 2003, 33(1): 109-116.
[8] ALBRECHER H, KORTSCHAK D. On ruin probability and aggregate claim representations for pareto claim size distributions [J]. Insurance: Mathematics and Economics, 2009, 45(3): 362-373.
[9] BRAZAUSKAS V, KLEEFELD A. Robust and efficient fitting of the generalized pareto distribution with actuarial applications in view [J]. Insurance: Mathematics and Economics, 2009, 45(3): 424-435.
[10] HE H, ZHOU N, ZHANG R. On estimation for the Pareto distribution [J]. Statistical Methodology, 2014, 21(11): 49-58.
[11] TUDOR C A. Chaos expansion and asymptotic behavior of the Pareto distribution [J]. Statistics and Probability Letters, 2014, 91(3): 62-68.
[12] FAHIDY T Z. Applying pareto distribution theory to electrolytic powder production [J]. Electrochemistry Communications, 2011, 13(3): 262-264.
[13] DIXIT U J, NOOGHABI M J. Efficient estimation in the pareto distribution with the presence of outliers [J]. Statistical Methodology, 2011, 8(4): 340-355.
[14] HARRIS C M. The pareto distribution as a queue service discipline [J]. Operational Research, 1968, 16(2): 307-313.
[15] ARNOLD B C. Pareto distribution [M]. [S.l.]: International Co-operative Publishing House, 1983.
[16] STEINDL J. Random processes and the growth of firms [M]. [S.l.]: Hafner Pub Co, 2004.
[17] HAGSTROEM K G. Remarks on pareto distributions [J]. Skandinavisk Aktuarietidskrift, 1960(1/2): 59-71.
[18] 茆诗松, 王静龙, 濮晓龙. 高等数理统计 [M]. 北京: 高等教育出版社, 2006.
[19] WALKER A M. On the asymptotic behavior of posterior distributions [J]. Journal of the Royal Statistical Society Series B(Methodological), 1969, 31(1): 80-88.
[20] BUHLMANN H, GISLER A. A Course in Credibility Theory and its Applications [M]. Amsterdam: Springer, 2005.
[21] 温利民. 信度估计的理论与方法 [M]. 北京: 科学出版社, 2012.
[22] PAN M, WANG R, WU X. On the consistency of credibility premiums regarding esscher principle [J]. Insurance Mathematics and Economics, 2008, 42(1): 119-126.
[23] 郑丹, 章溢, 温利民. 具有时间变化效应的信度模型 [J]. 江西师范大学学报, 2012(3): 249-252.
[24] 方婧, 章溢, 温利民. 聚合风险模型下的信度估计 [J]. 江西师范大学学报, 2012(6): 607-611. |