[ 1 ] BONHEURE D, HABETS P, OBERSNEL F, et al. Classical and non-classical solutions of a prescribed curvature equation [J]. J Differ Equ, 2007, 243(2): 208-237.
[ 2 ] PAN H J. One-dimensional prescribed mean curvature equation with exponential nonlinearity [J]. Nonlinear Anal, 2009, 70(2): 999-1010.
[ 3 ] BENEVIERIA P, DO´O J, DE MEDEIROS E. Periodic solutions for nonlinear systems with mean curvature-like operators [J]. Nonlinear Anal, 2006, 65(7): 1462-1475.
[ 4 ] LI W S, LIU Z L. Exact number of solutions of a prescribed mean curvature equation [J]. J Math Anal Appl, 2010, 367(2): 486-498.
[ 5 ] HABETS P, OMARI P. Multiple positive solutions of a one dimensional prescribed mean curvature problem [J]. Commun Contemp Math, 2007, 95: 701-730.
[ 6 ] FENG M Q. Periodic solutions for prescribed mean curvature Li´enard equation with a deviating argument [J]. Nonlinear Anal: Real World Appl, 2012, 13(3): 1216-1223.
[ 7 ] LIANG Z T, LU S P. Homoclinic solutions for a kind of prescribed mean curvature Duffing-type equation [J]. Adv Differ Equ, 2013, 2013: 279.
[ 8 ] LZYDOREK M, JANCZEWSKA J. Homoclinic solutions for a class of the second order Hamiltonian systems [J]. J Differ Equ, 2005, 219: 375-389.
[ 9 ] RABINOWITZ P. Homoclinic orbits for a class of Hamiltonian systems [J]. Proc R Soc Edinb A, 1990, 114: 33-38.
[10] TANG X H, XIAO L. Homoclinic solutions for ordinary p-Laplacian systems with a coercive potential [J]. Nonlinear Anal, 2009, 71: 1124-1132.
[11] LU S P. Homoclinic solutions for a class of second-order p-Laplacian differential systems with delay [J]. Nonlinear Anal: Real World Appl, 2011, 12: 780-788.
[12] ZHENG M, LI J. Nontrivial homoclinic solutions for prescribed mean curvature Rayleigh equations [J]. Adv Differ Equ, 2015, 2015: 77.
[13] LI Z Y, AN T Q, GE W G. Existence of periodic solutions for a prescribed mean curvature Li´enard p-Laplaceian equation with two delays [J]. Adv Differ Equ, 2014, 2014: 290.
[14] WANG D. Existence and uniqueness of periodic solution for prescribed mean curvature Rayleigh type p-Laplacian equation [J]. J Appl Math Comput, 2014, 46(1): 181-200.
[15] LU S P, GE W G. Periodic solutions for a kind of second order differential equations with multiple with deviating arguments [J]. Appl Math Comput, 2003, 146: 195-209.
[16] GAINES R E, MAWHIN J L. Coincidence Degree and Nonlinear Differential Equation [M]. New York: Springer-Verlag, 1977. |