1 |
陈洛南, 王勇, 费敏锐, 等. 从理工科视角探索系统生物学. 科技导报, 2007, 25 (10): 5- 9.
doi: 10.3321/j.issn:1000-7857.2007.10.002
|
2 |
REBELO C, SORESINA C. Coexistence in seasonally varying predator-prey systems with Allee effect. Nonlinear Analysis: Real World Applications, 2020, 55, 103140.
doi: 10.1016/j.nonrwa.2020.103140
|
3 |
ZHANG X M, LIU Z H. Hopf bifurcation analysis in a predator-prey model with predator-age structure and predator-prey reaction time delay. Applied Mathematical Modelling, 2020, 91, 530- 548.
|
4 |
WIJAYA K P, PÁEZ CHÁVEZ J, POCHAMPALLI R, et al. Food sharing and time budgeting in predator-prey interaction. Communications in Nonlinear Science and Numerical Simulation, 2021, 97, 105757.
doi: 10.1016/j.cnsns.2021.105757
|
5 |
STEPHENS P A, SUTHERLAND W J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends in Ecology and Evolution, 1999, 14, 401- 405.
doi: 10.1016/S0169-5347(99)01684-5
|
6 |
COURCHAMP F, BEREC L, GASCOIGNE J. Allee Effects in Ecology and Conservation [M]. New York: Oxford University Press, 2008.
|
7 |
SEN D, GHORAI S, SHARMA S, et al. Allee effect in prey’s growth reduces the dynamical complexity in prey-predator model with generalist predator. Applied Mathematical Modelling, 2020, 91, 768- 790.
|
8 |
CALVERT W H, HEDRICK L E, BROWER L P. Mortality of the monarch butterfly (Danaus plexippus L.): Avian predation at five overwintering sites in Mexico . Science, 1979, 204, 847- 851.
doi: 10.1126/science.204.4395.847
|
9 |
MOORING M S, FITZPATRICK T A, NISHIHIRA T T, et al. Vigilance, predation risk, and the Allee effect in desert bighorn sheep. Journal of Wildlife Management, 2004, 68, 519- 532.
doi: 10.2193/0022-541X(2004)068[0519:VPRATA]2.0.CO;2
|
10 |
PAL P J, SAHA T. Qualitative analysis of a predator-prey system with double Allee effect in prey. Chaos, Solitons and Fractals, 2015, 73, 36- 63.
doi: 10.1016/j.chaos.2014.12.007
|
11 |
LIU X, ZHANG T. Bogdanov-Takens and triple zero bifurcations of coupled van der Pol-Duffing oscillators with multiple delays. International Journal of Bifurcation and Chaos, 2017, 27, 1750133.
doi: 10.1142/S0218127417501334
|
12 |
YAO J H, LI G H, GUO G. Higher codimension bifurcation analysis of predator-prey systems with nonmonotonic functional responses. International Journal of Bifurcation and Chaos, 2020, (12): 2050167.
|
13 |
LIU X, WANG J L. Bogdanov-Takens and triple zero bifurcations of a delayed modified Leslie-Gower predator prey system. Abstract and Applied Analysis, 2013, 2013, 605471.
|
14 |
JIANG J, SONG Y L, YU P. Delay-induced triple-zero bifurcation in a delayed Leslie-type predator-prey model with additive Allee effect. International Journal of Bifurcation and Chaos, 2016, 26, 1650117.
doi: 10.1142/S0218127416501170
|
15 |
HALE J, Verduyn L S. Introduction to Functional Differential Equations [M]. New York: Springer, 1993.
|
16 |
FARIA T, MAGALHÃES L T. Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity. Journal of Differential Equations, 1995, 122, 201- 224.
doi: 10.1006/jdeq.1995.1145
|
17 |
FREIRE E, GARMERO E, RODRIGUEZ-LUIS A J, et al. A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviour of an unfolding. International Journal of Bifurcation and Chaos, 2002, (12): 2799- 2820.
|
18 |
JIAO J F, WANG R Q, CHANG H C, et al. Codimension bifurcation analysis of a modified Leslie-Grower predator-prey model with two delays. International Journal of Bifurcation and Chaos, 2018, 28, 1850060.
doi: 10.1142/S0218127418500608
|
19 |
QIAO Z Q, LIU X B, ZHU D M. Bifurcation in delay differential systems with triple-zero singularity. Chinese Annals of Mathematics (Series A), 2010, 31, 59- 70.
doi: 10.1007/s11401-008-0421-2
|