1 |
VAN DYKE M. Perturbation Methods in Fluid Mechanics [M]. Stanford: Parabolic Press, 1975.
|
2 |
NAYFEH A H. Introduction to Perturbation Techniques [M]. New York: John Wiley & Sons, 1981.
|
3 |
NAYFEH A H. Perturbation Methods [M]. New York: John Wiley & Sons, 2008.
|
4 |
LIAO S J. Beyond Perturbation: Introduction to the Homotopy Analysis Method [M]. Boca Raton, Florida: CRC Press, 2004.
|
5 |
LIAO S J. Homotopy Analysis Method in Nonlinear Differential Equations [M]. Beijing: Higer Education Press, 2012.
|
6 |
LYAPUNOV A M. The general problem of the stability of motion. International Journal of Control, 1992, 55 (3): 531- 534.
doi: 10.1080/00207179208934253
|
7 |
ADOMIAN G. Nonlinear Stochastic Operator Equations [M]. Orlando: Academic Press, 1986.
|
8 |
廖世俊. 求解非线性问题的同伦分析方法 [D]. 上海: 上海交通大学, 1992.
|
9 |
ODIBAT Z M. A study on the convergence of homotopy analysis method. Applied Mathematics and Computation, 2010, 217 (2): 782- 789.
doi: 10.1016/j.amc.2010.06.017
|
10 |
YABUSHITA K, YAMASHITA M, TSUBOI K. An analytic solution of projectile motion with the quadratic resistance law using the homotopy analysis method. Journal of Physics A: Mathematical and Theoretical, 2007, 40 (29): 8403- 8416.
doi: 10.1088/1751-8113/40/29/015
|
11 |
LIAO S J. Advances in the Homotopy Analysis Method [M]. Singapore: World Scientific, 2014.
|
12 |
VAN GORDER R A, VAJRAVELU K. On the selection of auxiliary functions, operators, and convergence control parameters in the application of the homotopy analysis method to nonlinear differential equations: A general approach. Communications in Nonlinear Science and Numerical Simulation, 2009, 14 (12): 4078- 4089.
doi: 10.1016/j.cnsns.2009.03.008
|
13 |
赵银龙. 同伦分析方法之改进及其在非线性边值问题之应用 [D]. 上海: 上海交通大学, 2015.
|
14 |
ROUX N L, SCHMIDT M, BACH F. A stochastic gradient method with an exponential convergence rate for finite training sets [EB/OL].(2013-03-11)[2020-07-26]. https://arxiv.org/pdf/1202.6258.pdf.
|
15 |
KINGMA D P, BA J L . Adam: A method for stochastic optimization [EB/OL]. (2015-07-23)[2020-08-27]. https://arxiv.org/pdf/1412.6980v8.pdf.
|
16 |
FEYNMAN R P, METROPOLIS N, TELLER E. Equations of state of elements based on the generalized Fermi-Thomas theory. Physical Review, 1949, 75 (10): 1561- 1573.
doi: 10.1103/PhysRev.75.1561
|
17 |
COULSON C A, MARCH N H. Momenta in atoms using the Thomas-Fermi method. Proceedings of the Physical Society, 1950, 63 (4): 367- 374.
doi: 10.1088/0370-1298/63/4/306
|
18 |
KOBAYASHI S, NAGAI S, UMEDA K. Accurate value of the initial slope of the ordinary TF function. Journal of the Physical Society of Japan, 1955, 10 (9): 759- 762.
doi: 10.1143/JPSJ.10.759
|
19 |
FERNÁNDEZ F M. Rational approximation to the Thomas-Fermi equations. Applied Mathematics and Computation, 2011, 217 (13): 6433- 6436.
doi: 10.1016/j.amc.2011.01.049
|