[1] GROUPLENS RESEARCH.MovieLensDataset[EB/OL].[2017-08-20]. http://grouplens.org/datasets/movielens/. [2] KASSAK O, KOMPAN M, BIELIKOVA M. User preference modeling by global and individual weights for personalized recommendation[J]. Acta Polytechnica Hungarica, 2015, 12(8):27-41 [3] YIN H, CUI B, CHEN L, et al. Modeling location-based user rating profiles for personalized recommendation[J]. ACM Transactions on Knowledge Discovery from Data, 2015, 9(3):1-41. [4] YUAN Q, CONG G, MA Z, et al. Who, where, when and what:Discover spatio-temporal topics for Twitter users[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2013:605-613. [5] ZHAO K, CONG G, YUAN Q, et al. SAR:A sentiment-aspect-region model for user preference analysis in geo-tagged reviews[C]//IEEE, International Conference on Data Engineering. IEEE, 2015:675-686. [6] JIANG B, LIANG J, SHA Y, et al. Retweetingbehavior prediction based on one-class collaborative filtering in social networks[C]//Proceedings of the 39th International ACM Special Interest Group on Information Retrievalconference on Research and Development in Information Retrieval. ACM, 2016:977-980. [7] 张连文, 郭海鹏. 贝叶斯网引论[M]. 北京:科学出版社, 2006. [8] DAPHNEKOLLER, NIRFRIEDMAN, [9] KIM J S, JUN C H. Ranking evaluation of institutions based on a Bayesian network having a latent variable[J]. Knowledge-Based Systems, 2013, 50:87-99. [10] SCHÜTZ W, SCHÄFER R. Bayesian networks for estimating the user's interests in the context of a configuration task[C]//Proceedings of the UM2001 Workshop on Machine Learning for User Modeling, 2001:13-17. [11] FRIEDMAN N. The Bayesian structural EM algorithm[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, 2013:129-138. [12] ELIDAN G, FRIEDMAN N. Learning hidden variable networks:The information bottleneck approach[J]. Journal of Machine Learning Research, 2005, 6(6):81-127. [13] JIN C, ZHANG Y, BALAKRISHNAN S, et al. Local maxima in the likelihood of gaussian mixture models:Structural results and algorithmic consequences[J]. Advances in Neural Information Processing Systems, 2016, 4(1):16-24. [14] ZHAO G, QIANX, XIE X. User-service rating prediction by exploring social users' rating behaviors[J]. IEEE Transactions on Multimedia, 2016, 18(3):496-506. [15] 高全力, 高岭, 杨建锋, 等. 上下文感知推荐系统中基于用户认知行为的偏好获取方法[J]. 计算机学报, 2015(9):1767-1776. [16] 王红兵, 孙文龙, 王华兰. Web服务选择中偏好不确定问题的研究[J]. 计算机学报, 2013, 36(2):275-285. [17] 史艳翠, 孟祥武, 张玉洁, 等. 一种上下文移动用户偏好自适应学习方法[J]. 软件学报, 2012, 23(10):2533-2549. [18] GAO R, YUE K, WU H, et al. Modeling user preference from rating data based on the bayesian network with a latent variable[C]//Proceedings of 17th International Conference on Web-Age Information Management, 2016:3-16. [19] HUANG Y, BIAN L. A Bayesian network and analytic hierarchy process based personalized recommendations for tourist attractions over the Internet[J]. Expert Systems with Applications, 2009, 36(1):933-943. [20] CHAPELLE O, ZHANG Y. A dynamic Bayesian network click model for web search ranking[C]//Proceedings of the 18th International Conference on World Wide Web, ACM, 2009:1-10. [21] HUETE J, DE CAMPOS L M, FERNANDEZ-LUNA J M, et al. Using structural content information for learning user profiles[C]//Proceedings of 30th Special Interest Group on Information Retrieval, 2007:38-45. [22] AUFFENBERG F, STEIN S, ROGERS A. A personalised thermal comfort model using a Bayesian network[C]//Proceedings of the 2015 International Joint Conference on Artificial Intelligence, 2015:130-139. [23] YUE K, FANG Q, WANG X, et al. A parallel and incremental approach for data-intensive learning of Bayesian networks[J]. IEEE Transactions on Cybernetics, 2015, 45(12):2890-2909. [24] TAMADA Y, IMOTO S, MIYANO S. Parallel algorithm for learning optimal Bayesian network structure[J]. Journal of Machine Learning Research, 2011, 12(7):2437-2459. [25] MIT. FullBNT[CP/OL].[2017-08-20]. http://www.cs.ubc.ca/murphyk/Software/BNT/FullBNT-1.0.4.Zip. |