华东师范大学学报(自然科学版) ›› 2017, Vol. 2017 ›› Issue (6): 76-84.doi: 10.3969/j.issn.1000-5641.2017.06.007

• 计算机科学 • 上一篇    下一篇

基于协作频谱感知和干扰约束的认知异构网络

叶仕通1, 万智萍2, 柯建波1, 刘少江2, 倪伟传2   

  1. 1. 广东工业大学 华立学院, 广州 511325;
    2. 中山大学 新华学院, 广州 510520
  • 收稿日期:2016-08-19 出版日期:2017-11-25 发布日期:2017-11-25
  • 作者简介:叶仕通,男,硕士,讲师,研究方向为视频信号处理、计算机视觉、模式识别、图形图像处理和数据挖掘.Email:yst888_0@126.com.
  • 基金资助:
    广东省青年创新人才自然科学类基金(2014KQNCX251,2014KQNCX253)

Cognitive heterogeneous network based on cooperative spectrum sensing and interference constraints

YE Shi-tong1, WAN Zhi-ping2, KE Jian-bo1, LIU Shao-jiang2, NI Wei-chuan2   

  1. 1. Huali College, Guangdong University of Technology, Guangzhou 511325, China;
    2. Xinhua College, Sun Yat-Sen University, Guangzhou 510520, China
  • Received:2016-08-19 Online:2017-11-25 Published:2017-11-25

摘要: 针对异构无线网络的空闲信道检测准确率及网络吞吐量的优化问题,提出一种基于协作频谱感知和干扰约束的认知异构网络.首先,所提出的认知异构网络系统模型采用多个中心次用户(Center SecondaryUsers,CSU)节点协助其他节点进行频谱感知,并引入了能量检测阈值,在提高空闲信道检测准确率的同时节省检测能耗.接着,采用最大化数据速率的联合优化方程,在干扰功率的限制约束下为节点分配最佳的发射功率,降低干扰程度并优化网络吞吐量.实验仿真结果表明,相比较基于集群的协作频谱感知分配策略算法和基于QoS约束的能量感知竞争功率分配算法,该算法的网络吞吐量分别提升了3.4%和1.5%,平均频谱利用率分别提高了9.3%和7.4%.

关键词: 认知异构网络, 协作频谱感知, 干扰约束, 功率分配, 网络吞吐量优化

Abstract: For idle channel detection accuracy and network throughput optimized on heterogeneous wireless networks, a cognitive heterogeneous network based on cooperative spectrum sensing and interference constraints is proposed. First, the proposed model of cognitive heterogeneous network system that used several center secondary user nodes to assist other nodes spectrum sensing, and the introduction of energy detection threshold improves idle channel detection accuracy of detection while saves energy. Then, the joint optimization equation of maximizing data rate was used to assignment optimal transmit power for node under constrained to limit interference power, it reduced the degree of interference and optimize network throughput. The simulation results show that, compared with the cluster-based cooperative spectrum sensing based on energy allocation strategy algorithm and QoS constraints perceived competitive power allocation algorithm, which improved network throughput, respectively, 3.4% and 1.5%, and increased the average spectral efficiency 9.3% and 7.4%, respectively.

Key words: cognitive heterogeneous networks, cooperative spectrum sensing, interference constraints, power allocation, network throughput optimization

中图分类号: