[1] 黄燕, 黄民生, 徐亚同, 等. 上海城市河道治理工程简介[J]. 环境工程, 2007, 25(2):85-88.
[2] 王英才, 刘永定, 郝宗杰, 等. 上海市几条黑臭河道治理效果的比较与分析[J]. 水生生物学报, 2009, 33(2):355-359.
[3] 张晓红, 宋肖锋, 蔡国强, 等. 生态修复综合技术在杭州虾龙圩河的应用[J]. 环境工程学报, 2012, 6(12):4535-4542.
[4] 汪建华, 王文浩, 何岩, 等. 原位曝气修复黑臭河道底泥内源营养盐的示范工程效能分析[J]. 环境工程学报, 2016, 10(9):5301-5307.
[5] 赵联芳, 黄靖宇. 苏州太仓市污水处理厂尾水排放河道的治理[J]. 水资源保护, 2015, 31(1):63-68.
[6] 郑晓英, 朱星, 周翔, 等. 铁炭内电解垂直流人工湿地对污水厂尾水深度脱氮效果[J]. 环境科学, 2017, 38(6):2412-2418.
[7] 陈玉辉. 典型城市黑臭河道治理后的富营养化分析与预测研究[D]. 上海:华东师范大学, 2013.
[8] 曹承进, 陈振楼, 黄民生. 城市黑臭河道富营养化次生灾害形成机制及其控制对策思考[J]. 华东师范大学学报(自然科学版), 2015(2):9-21.
[9] SUN W, XIA C Y, XU M Y, et al. Diversity and distribution of planktonic anaerobic ammonium-oxidizing bacteria in the Dongjiang River, China[J]. Microbiological Research, 2014, 169(12):897-906.
[10] HAN H, LI Z. Effects of macrophyte-associated nitrogen cycling bacteria on ANAMMOX and denitrification in river sediments in the Taihu Lake region of China[J]. Ecological Engineering, 2016, 93:82-90.
[11] ZHANG S B, XIA X H, LIU T, et al. Potential roles of anaerobic ammonium oxidation (ANAMMOX) in overlying water of rivers with suspended sediments[J]. Biogeochemistry, 2017, 132(3):237-249.
[12] 焦涛. 城市河道沉积物-水体系硫化物赋存特征及反硫化过程研究[D]. 南京:河海大学, 2007.
[13] 李文超. 曝气扰动下城市黑臭河道底泥内源硫、铁行为与氮循环耦合作用研究[D]. 上海:华东师范大学, 2016.
[14] 李真, 黄民生, 何岩, 等. 铁和硫的形态转化与水体黑臭的关系[J]. 环境科学与技术, 2010, 33(6E):1-3,7.
[15] 何岩, 沈叔云, 黄民生, 等. 城市黑臭河道底泥内源氮硝化-反硝化作用研究[J]. 生态环境学报, 2012, 21(6):1166-1170.
[16] 张丹, 王川, 王艳云, 等. 杭州西湖底泥反硝化作用初探[J]. 水生态学杂志, 2015, 36(3):18-24.
[17] 涂玮灵. 反硝化菌剂对黑臭河道底泥的修复效果及条件优化研究[D]. 南宁:广西大学, 2014.
[18] THAMDRUP B, DALSGAARD T. Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments[J]. Applied and Environmental Microbiology, 2002, 68(3):1312-1318.
[19] DEVOL A H. Denitrification, Anammox, and N2 Production in Marine Sediments[J]. Annual Review of Marine Science, 2015, 7:403-423.
[20] SALK K R, ERLER D V, EYRE B D, et al. Unexpectedly high degree of anammox and DNRA in seagrass sediments:Description and application of a revised isotope pairing technique[J]. Geochimica Et Cosmochimica Acta, 2017, 211:64-78.
[21] YANG X R, WENG B S, LI H, et al. An overlooked nitrogen loss linked to anaerobic ammonium oxidation in estuarine sediments in China[J]. Journal of Soils and Sediments, 2017, 17(10):2537-2546.
[22] ZHENG Y L, JIANG X F, HOU L J, et al. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient[J]. Journal of Geophysical Research Biogeosciences, 2016, 121(6):1632-1645.
[23] ZHAO J W, YIN X J, HUANG S S, et al. Distribution and diversity of anammox bacteria in two eutrophic lakes in Wuhan City, China[J]. Fundamental and Applied Limnology, 2017, 190(3):183-187.
[24] YOSHINAGA I, AMANO T, YAMAGISHI T, et al. Distribution and diversity of anaerobic ammonium oxidation (ANAMMOX) bacteria in the sediment of a eutrophic freshwater lake, Lake Kitaura, Japan[J]. Micorbes and Environments, 2011, 26:189-197.
[25] 王衫允, 祝贵兵, 曲冬梅, 等. 白洋淀富营养化湖泊湿地厌氧氨氧化菌的分布及对氮循环的影响[J]. 生态学报, 2012, 32(21):6591-6598.
[26] 郑艳玲. 长江口潮滩湿地氨氧化菌群动态及活性研究[D]. 上海:华东师范大学, 2015.
[27] HU B L, SHEN L D, ZHENG P, et al. Distribution and diversity of anaerobic ammonium-oxidizing bacteria in the sediments of the Qiantang River[J]. Environmental Microbiology Reports, 2012, 4(5):540-547.
[28] 李志洪. 曝气扰动模式对黑臭河道底泥内源营养盐行为的影响作用及氮转化功能菌群响应规律研究[D]. 上海:华东师范大学, 2015.
[29] 汪建华. 城市黑臭河道氮转化途径分型表征及微生物作用机理研究[D]. 上海:华东师范大学, 2017.
[30] 赵永强, 夏永秋, 李博伦, 等. 采用膜进样质谱同时测定河流沉积物反硝化和厌氧氨氧化[J]. 农业环境科学学报, 2014, 33(4):794-802.
[31] 陈建军, 张建, 黄民生, 等. 硝酸盐介导底泥硫自养反硝化的过程、效应和应用[J]. 华东师范大学学报(自然科学版), 2015(2):91-97.
[32] YANG X, HUANG S, WU Q, et al. Nitrate reduction coupled with microbial oxidation of sulfide in river sediment[J]. Journal of Soils and Sediments, 2012, 12(9):1435-1444.
[33] 余光伟, 余绵梓, 种云霄, 等. 投加硝酸钙对城市黑臭河道底泥氮迁移转化的影响[J]. 环境工程学报, 2015, 9(8):3625-3632.
[34] KRAFT B, TEGETMEYER H E, SHARMA R, et al. The environmental controls that govern the end product of bacterial nitrate respiration[J]. Science, 2014, 345:676-679.
[35] VACLAVKOVA S, JORGENSEN C J, JACOBSEN O S, et al. The importance of microbial iron sulfide oxidation for nitrate depletion in anoxic Danish sediments[J]. Aquatic Geochemistry, 2014, 20:419-435.
[36] HAYAKAWA A, HATAKEYAMA M, ASANO R. Nitrate reduction coupled with pyrite oxidation in the surface sediments of a sulfide-rich ecosystem[J]. Journal of Geophysical Research, 2013, 118(2):639-649.
[37] RUSS L, SPETH D R, JETTEN M S M, et al. Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system[J]. Environmental Microbiology, 2014, 16:3487-3498.
[38] SCHRUM H N, SPIVACK A J, KASTNER M, et al. Sulfate-reducing ammonium oxidation:A thermodynamically feasible metabolic pathway in subseafloor sediment[J]. Geology, 2009, 37(10):943-946.
[39] WENK C B, BLEES J, ZOPFI J, et al. Anaerobic ammonium oxidation (ANAMMOX) bacteria and sulfide-dependent denitrifiers coexist in the water column of a meromictic south-alpine lake[J]. Limnology Oceanography, 2013, 58:1-12.
[40] DAPENA-MORA A, FERNANDEZ I, CAMPOS J L, et al. Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production[J]. Enzyme and Microbial Technology, 2007, 40:859-865.
[41] JIN R C, YANG G F, ZHANG Q Q, et al. The effect of sulfide inhibition on the ANAMMOX process[J]. Water Research, 2013, 47(3):1459-1469.
[42] DENG F Y, HOU L J, LIU M, et al. Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary[J]. Journal of Geophysical Research, 2015, 120(8):1521-1531.
[43] JENSEN M M. Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea[J]. Limnology and Oceanography, 2008, 53(1):23-36.
[44] VANDE GRAAF A A, DE BRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor[J]. Microbiology, 1996, 142:2187-2196.
[45] KALYUZHNYI S, GLADCHENKO M, MULDER A, et al. DEAMOX-New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite[J]. Water Research, 2006, 40:3637-3645.
[46] GREENE E A, HUBERT C, NEMATI M, et al. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria[J]. Environmental Microbiology, 2003, 5(7):607-617.
[47] JIN R, YANG G, YU J, et al. The inhibition of the Anammox process:A review[J]. Chemical Engineering Journal, 2012, 197:67-79.
[48] SHAN J, YANG P, SHANG X, et al. Anaerobic ammonium oxidation and denitrification in a paddy soil as affected by temperature, pH, organic carbon, and substrates[J]. Biology & Fertility of Soils, 2018, 54(3):341-348.
[49] 崔丽, 王慧, 黄开拓, 等. 硫酸盐型厌氧氨氧化的反应机理及启动过程影响因素综述[J]. 化工环保, 2017, 37(2):159-165.
[50] SCHUBERT C J, DURISCH-KAISER E, WEHRLI B, et al. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika)[J]. Environmental Microbiology, 2006, 8:1857-1863.
[51] 徐栎亚, 赵雪, 庄林杰, 等. 基于hzsB功能基因研究典型湿地沉积物中厌氧氨氧化细菌的群落结构[J]. 环境科学学报, 2017, 37(12):4636-4645.
[52] 沈李东, 胡宝兰, 郑平, 等. 西湖底泥中厌氧氨氧化菌的分子生物学检测[J]. 环境科学学报, 2011, 31(8):1609-1615.
[53] YANG Y Y, DAI Y, LI N N, et al. Temporal and spatial dynamics of sediment anaerobic ammonium oxidation (ANAMMOX) bacteria in Freshwater Lakes[J]. Microbial Ecology, 2017, 73(2):285-295.
[54] DYKSMA S, BISCHOF K, FUCHS B M, et al. Ubiquitous gammaproteobacteria dominate dark carbon fixation in coastal sediments[J]. Isme Journal, 2016, 10:1939-1953.
[55] SHAO M, ZHANG T, FANG H H. Sulfur-driven autotrophic denitrification:diversity, biochemistry and engineering applications[J]. Applied Microbiology and Biotechnology, 2010, 88(5):1027-1042.
[56] 张玉, 贺惠, 米铁柱, 等. 东海海域表层沉积物中硫酸盐还原菌分布特征研究[J]. 中国环境科学, 2016, 36(12):3750-3758.
[57] 张伟, 张丽丽. 云南洱海沉积物中硫酸盐还原菌的时空分布特征[J]. 地球与环境, 2016, 44(2):177-184.
[58] 刘建丽, 赵吉, 武琳慧. 乌梁素海湖滨湿地硫酸盐还原菌种群分布[J]. 农业环境科学学报, 2016, 35(2):358-363.
[59] 蔡靖, 蒋坚祥, 郑平. 一株硫酸盐型厌氧氨氧化菌的分离和鉴定[J]. 中国科学:化学, 2010, 40(4):421-426.
[60] 赖杨岚. 硫酸盐型厌氧氨氧化的启动特性与影响因素研究[D]. 广州:华南理工大学, 2011.
[61] 刘正川, 袁林江, 周国标, 等. 从亚硝酸还原厌氧氨氧化转变为硫酸盐型厌氧氨氧化[J]. 环境科学, 2015, 36(9):3345-3351.
[62] RIKMANN E, ZEKKER I, TOMINGAS M, et al. Sulfate-reducing anammox for sulfate and nitrogen containing wastewaters[J]. Desalination and Water Treatment, 2014, 57(7):3132-3141.
[63] 完颜德卿. ANAMMOX培养物对氨与硫酸盐同步转化机制的研究[D]. 江苏苏州:苏州科技大学, 2017.
[64] 姚丽平. 城市黑臭河道底泥微生物群落结构对人工曝气的响应特征及机理研究[D]. 上海:华东师范大学, 2014. |