[1] HELMBOLD D P, SCHAPIRE R E, SINGER Y, et al. Online portfolio selection using multiplicative updates[J]. Mathematical Finance, 1998, 8(4):325-347.
[2] GYÖRFI L, LUGOSI G, UDINA F. Nonparametric kernel-based sequential investment strategies[J]. Mathematical Finance, 2010, 16(2):337-357.
[3] THEODOROS TSAGARIS, AJAY JASRA, NIALL ADAMS. Robust and adaptive algorithms for online portfolio selection[J]. Quantitative Finance, 2012, 12(11):1651-1662.
[4] LI B. PAMR:Passive aggressive mean reversion strategy for portfolio selection[J]. Machine Learning, 2012, 87(2):221-258.
[5] LI B, HOI S C H, SAHOO D, et al. Moving average reversion strategy for on-line portfolio selection[J]. Artiflcial Intelligence, 2015, 222(1):104-123.
[6] AGARWAL A, HAZAN E, KALE S, et al. Algorithms for portfolio management based on the Newton method[C]//Proceedings of the 23rd International Conference on Machine Learning. 2006:9-16.
[7] ORDENTLICH E, COVER T M. Online portfolio selection[C]//Proceedings of the 9th Annual Conference on Computational Learning Theory. 1996:310-313.
[8] 胡海鸥. 货币理论与货币政策[M]. 上海:上海人民出版社, 2004.
[9] DAVIS M H A, NORMAN A R. Portfolio selection with transaction costs[J]. Mathematics of Operations Research, 1990, 15(4):676-713.
[10] ALBEVERIO S, LAO L J, ZHAO X L. Online portfolio selection strategy with prediction in the presence of transaction costs[J]. Mathematical Methods of Operations Research, 2001, 54(1):133-161.
[11] LI B, WANG J L, HUANG D J, et al. Transaction cost optimization for online portfolio selection[J]. Quantitative Finance, 2018, 18(8):1411-1424.
[12] BLUM A, KALAI A. Universal portfolios with and without transaction costs[J]. Machine Learning, 1999, 35(3):193-205.
[13] KOZAT S S, SINGER A C. Universal semiconstant rebalanced portfolios[J]. Mathematical Finance, 2011, 21(2):293-311.
[14] HUANG D J, ZHU Y, LI B, et al. Semi-universal portfolios with transaction costs[C]//Proceedings of the 24th International Conference on Artiflcial Intelligence. AAAI Press, 2015:178-184.
[15] MARKOWITZ H. Portfolio selection[J]. Journal of Finance, 1952, 7(1):77-91.
[16] KELLY J L. A new interpretation of information rate[J]. Bell System Technical Journal, 1956, 35(4):917-926.
[17] LI B, HOI S C H. Online portfolio selection:A survey[J]. Papers, 2012, 46(3):1-36.
[18] COVER T M. Universal portfolios[J]. Mathematical Finance, 1991(1):1-29.
[19] DAS P, JOHNSON N, BANERJEE A. Online lazy updates for portfolio selection with transaction costs[C]//27th AAAI Conference on Artiflcial Intelligence. AAAI Press, 2013:202-208
[20] BOYD S, PARIKH N, CHU E, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations & Trends in Machine Learning, 2010, 3(1):1-122.
[21] FAN R E, CHEN P H, LIN C J, et al. Working set selection using second order information for training support vector machines[J]. Journal of Machine Learning Research, 2005, 6(4):1889-1918.
[22] LI B, HOI S C H, ZHAO P, et al. Confldence weighted mean reversion strategy for online portfolio selection[J]. ACM Transactions on Knowledge Discovery From Data, 2013, 7(1):1-38.
[23] HOI S C H, SAHOO D, LU J, et al. Online learning:A comprehensive survey[J]. arXiv:1802. 02871v2[cs.LG]22 Oct 2018.
[24] BROOKES M. The matrix reference manual[R/OL].[2018-06-30]. http://www.ee.imperial.ac.uk/hp/stafi/dmb/matrix/intro.html.
[25] HAZAN E, AGARWAL A, KALE S. Logarithmic regret algorithms for online convex optimization[J]. Machine Learning, 2007, 69(2/3):169-192. |