[1] ZHOU R, YUAN J S, ZHANG Z Y. Robust hand gesture recognition based on finger-earth mover’s distance with a commodity depth camera [C]// Proceedings of the 19th International Conference on Multimedia. ACM, 2011: 1093–1096. DOI: 10.1145/2072298.2071946. [2] TOMPSON J, STEIN M, LECUN Y, et al. Real-time continuous pose recovery of human hands using convolutional networks [J]. ACM Transactions on Graphics, 2014, 33(5): Article number 169. DOI: 10.1145/2629500. [3] SINHA A, CHOI C, RAMANI K. Deephand: Robust hand pose estimation by completing a matrix imputed with deep features [J]. Computer Vision and Pattern Recognition, 2016(1): 4150-4158. [4] KHAN R, HANBURY A, STTTINGER J, et al. Color based skin classification [J]. Pattern Recognition Letters, 2012, 33(2): 157-163. DOI: 10.1016/j.patrec.2011.09.032. [5] GE L H, LIANG H, YUAN J S, et al. 3D convolutional neural networks for efficient and robust hand pose estimation from single depth images [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 5679-5688. DOI: 10.1109/CVPR.2017.602. [6] YUAN S X, YE Q, STENGER B, et al. BigHand2.2M benchmark: Hand pose dataset and state of the art analysis [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017: 2605-2613. DOI: 10.1109/CVPR.2017.279. [7] SHOTTON J, GIRSHICK R, FITZGIBBON A, et al. Efficient human pose estimation from single depth images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2821-2840. DOI: 10.1109/TPAMI.2012.241. [8] QIAN C, SUN X, WEI Y C, et al. Realtime and robust hand tracking from depth [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2014: 1106-1113. DOI: 10.1109/CVPR.2014.145. [9] XU C, CHENG L. Efficient hand pose estimation from a single depth image [C]// 2013 IEEE International Conference on Computer Vision. IEEE, 2013: 3456-3462. DOI: 10.1109/ICCV.2013.429. [10] CAMPBELL L W, BECKER D A, AZARBAYEJANI A, et al. Invariant features for 3-D gesture recognition [C]// Proceedings of the Second International Conference on Automatic Face and Gesture Recognition. IEEE, 1996: 157-162. DOI: 10.1109/AFGR.1996.557258. [11] JOONGROCK K, SUNJIN Y, DONGCHUL K, et al L. An adaptive local binary pattern for 3D hand tracking [J]. Pattern Recognition, 2017, 61: 139-152. DOI: 10.1016/j.patcog.2016.07.039. [12] KESKIN C, KIRAÇ F, KARA Y E, et al. Real time hand pose estimation using depth sensors [C]// 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops). IEEE, 2011: 1228-1234. DOI: 10.1109/ICCVW.2011.6130391. [13] LAPTEV D, SAVINOV N, BUHMANN J M, et al. TI-POOLING: Transformation-invariant pooling for feature learning in convolutional neural networks [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016: 289-297. DOI: 10.1109/CVPR.2016.38. [14] BOUREAU Y L, PONCE J, LECUN Y. A theoretical analysis of feature pooling in visual recognition [C]// Proceedings of the 27th International Conference on Machine Learning (ICML-10). 2010: 111–118. [15] LEPETIT V, LAGGER P, FUA P. Randomized trees for real-time keypoint recognition [C]// 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE, 2005: 775–781. DOI: 10.1109/CVPR.2005.288. [16] CHENG G, ZHOU P C, HAN J W. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 7405-7415. DOI: 10.1109/TGRS.2016.2601622. [17] MELAX S, KESELMAN L, ORSTEN S. Dynamics based 3D skeletal hand tracking [C]// Proceedings of the 2013 Graphics Interface Conference. ACM, 2013: 63-70. DOI:10.1145/2448196.2448232. [18] SRIDHAR S, OULASVIRTA A, THEOBALT C. Interactive markerless articulated hand motion tracking using RGB and depth data [C]// 2013 IEEE International Conference on Computer Vision. IEEE, 2013: 2456-2463. DOI: 10.1109/ICCV.2013.305. [19] OIKONOMIDIS I, KYRIAZIS N, ARGYROS A. Efficient model-based 3D tracking of hand articulations using kinect [C]// Proceedings of the British Machine Vision Conference. BMVC, 2011: 101.1-101.11. DOI: 10.5244/C.25.101. [20] ROMERO J, KJELLSTROM H, KRAGIC D. Monocular real-time 3D articulated hand pose estimation [C]// 2009 9th IEEE-RAS International Conference on Humanoid Robots. IEEE, 2009: 87-92. DOI: 10.1109/ICHR.2009.5379596. [21] SUN X, WEI Y C, LIANG S, et al. Cascaded hand pose regression [C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 824-832. DOI: 10.1109/CVPR.2015.7298683. [22] TOMPSON J, JAIN A, LECUN Y, et al. Joint training of a convolutional network and a graphical model for human pose estimation [EB/OL]. (2014-09-17)[2019-03-01]. https://arxiv.org/pdf/1406.2984.pdf. [23] JHINN W L, GOH K O M, HOE L S, et al. A contactless rotation-invariant palm vein recognition system [J]. Advanced Science Letters, 2018, 24(2): 1143-1148. DOI: 10.1166/asl.2018.10704. [24] CHENG G, HAN J W, ZHOU P C, et al. Learning rotation-invariant and fisher discriminative convolutional neural networks for object detection [J]. IEEE Transactions on Image Processing, 2019, 28(1): 265-278. DOI: 10.1109/TIP.2018.2867198. [25] SHOTTON J, SHARP T, KIPMAN A, et al. Realtime human pose recognition in parts from single depth images [J]. Communications of the ACM, 2013, 56(1): 116-124. DOI: 10.1145/2398356.2398381. [26] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2015-04-10)[2019-03-01]. https://arxiv.org/pdf/1409.1556.pdf. [27] TANG D H, CHANG H J, TEJANI A, et al. Latent regression forest: structured estimation of 3D articulated hand posture [C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2014: 3786-3793. DOI: 10.1109/CVPR.2014.490. [28] ŠARI’C M. Libhand: A library for hand articulation [EB/OL]. [2019-03-01]. http://www.libhand.org/. [29] KINGMA D P, LEI BA J. Adam: A method for stochastic optimization [EB/OL]. (2017-01-30)[2019-03-01]. https://arxiv.org/pdf/1412.6980v9.pdf. [30] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks [J]. Journal of Machine Learning Research, 2010, 9: 249-256. |