[1] FREEMAN L C. Visualizing social networks [J]. Social Network Data Analytics, 2000, 6(4): 411-429. [2] THEOCHARIDIS A, DONGEN S V, ENRIGHT A J, et al. Network visualization and analysis of gene expression data using BioLayout [J]. Nature Protocol, 2009, 4(10): 1535-1550. [3] TANG J, QU M, WANG M, et al. LINE: Large-scale information network embedding [C]// The Web Conference. 2015: 1067-1077. [4] LIBENNOWELL D, KLEINBERG J. The link-prediction problem for social networks [J]. Journal of the Association for Information Science and Technology, 2007, 58(7): 1019-1031. [5] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data [J]. Ai Magazine, 2008, 29(3): 93-106. [6] HERMAN I, MELANCON G, MARSHALL M S, et al. Graph visualization and navigation in information visualization: A survey [J]. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(1): 24-43. [7] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science, 2000, 290(5500): 2323-2326. [8] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C]// Neural Information Processing Systems. 2001: 585-591. [9] CAO S, LU W, XU Q, et al. GraRep: Learning graph representations with global structural information [C]// Conference on Information and Knowledge Management. 2015: 891-900. [10] OU M, CUI P, PEI J, et al. Asymmetric transitivity preserving graph embedding [C]// Knowledge Discovery and Data Mining. 2016: 1105-1114. [11] MOUSAZADEH S, COHEN I. Embedding and function extension on directed graph [J]. Signal Processing, 2015, 111: 137-149. [12] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality [C]// Neural Information Processing Systems. 2013: 3111-3119. [13] MIKOLOV T, CHEN K, CORRADO G S, et al. Efficient estimation of word representations in vector space [C]// International Conference on Learning Representations. 2013. [14] MIKOLOV T, YIH W, ZWEIG G, et al. Linguistic regularities in continuous space word representations [C]// North American Chapter of the Association for Computational Linguistics. 2013: 746-751. [15] PEROZZI B, ALRFOU R, SKIENA S, et al. DeepWalk: Online learning of social representations [C]// Knowledge Discovery and Data Mining. 2014: 701-710. [16] YANG J, LESKOVEC J. Overlapping communities explain core-periphery organization of networks [J]. Proceedings of the IEEE, 2014, 102(12): 1892-1902. [17] GROVER A, LESKOVEC J. Node2vec: Scalable feature learning for networks [C]// Knowledge Discovery and Data Mining. 2016: 855-864. [18] NARAYANAN A, CHANDRAMOHAN M, CHEN L, et al. Subgraph2vec: Learning distributed representations of rooted sub-graphs from large graphs [C]// ArXiv: Learning. 2016. [19] RIBEIRO L F, SAVERESE P H, FIGUEIREDO D R, et al. Struc2vec: Learning node representations from structural identity [C]// Knowledge Discovery and Data Mining. 2017: 385-394. [20] LI C, WANG S, YANG D, et al. PPNE: Property preserving network embedding [C]// Database Systems for Advanced Applications. 2017: 163-179. [21] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information [C]// International Conference on Artificial Intelligence. 2015: 2111-2117. [22] WANG D, CUI P, ZHU W, et al. Structural deep network embedding [C]// Knowledge Discovery and Data Mining. 2016: 1225-1234. [23] CHANG S, HAN W, TANG J, et al. Heterogeneous network embedding via deep architectures [C]// Knowledge Discovery and Data Mining. 2015: 119-128. [24] TANG J, CHANG S, AGGARWAL C C, et al. Negative link prediction in social media [C]// Web Search and Data Mining. 2015: 87-96. [25] WANG S, TANG J, AGGARWAL C C, et al. Signed network embedding in social media [C]// Siam International Conference on Data Mining. 2017: 327-335. [26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Computer Vision and Pattern Recognition. 2016: 770-778. [27] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks [C]// ArXiv: Learning. 2016. [28] DEFFERRARD M, BRESSON X, VANDERGHEYNST P, et al. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Neural Information Processing Systems. 2016: 3844-3852. [29] NIEPERT M, AHMED M H, KUTZKOV K, et al. Learning convolutional neural networks for graphs [C]// International Conference on Machine Learning. 2016: 2014-2023. [30] BAHDANAU D, CHO K, BENGIO Y, et al. Neural machine translation by jointly learning to align and translate [C]// ArXiv: Computation and Language. 2014. [31] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks [C]// ArXiv: Machine Learning. 2017. [32] BHAGAT S, CORMODE G, ROZENBAUM I, et al. Applying link-based classification to label blogs [C]// Web Mining and Web Usage Analysis. 2009: 97-117. [33] PEARSON K. LIII. On lines and planes of closest fit to systems of points in space [J]. Philosophical Magazine Series 1, 1901, 2(11): 559-572. [34] DER MAATEN L V, HINTON G E. Visualizing data using t-SNE [J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
|