华东师范大学学报(自然科学版) ›› 2020, Vol. 2020 ›› Issue (5): 68-82.doi: 10.3969/j.issn.1000-5641.202091001

• 机器学习方法与系统 • 上一篇    下一篇

深度神经网络模型压缩方法与进展

赖叶静, 郝珊锋, 黄定江   

  1. 华东师范大学 数据科学与工程学院, 上海 200062
  • 收稿日期:2020-08-02 发布日期:2020-09-24
  • 通讯作者: 黄定江,男,教授,博士生导师,研究方向为机器学习与人工智能.E-mail:djhuang@dase.ecnu.edu.cn E-mail:djhuang@dase.ecnu.edu.cn
  • 基金资助:
    国家自然科学基金(11501204, U1711262)

Methods and progress in deep neural network model compression

LAI Yejing, HAO Shanfeng, HUANG Dingjiang   

  1. School of Data Science and Engineering, East China Normal University, Shanghai 200062, China
  • Received:2020-08-02 Published:2020-09-24

摘要: 深度神经网络(Deep Neural Network, DNN)模型通过巨大的内存消耗和高计算量来实现强大的性能, 难以部署在有限资源的硬件平台上. 通过模型压缩来降低内存成本和加速计算已成为热点问题, 近年来已有大量的这方面的研究工作. 主要介绍了4种具有代表性的深度神经网络压缩方法,即网络剪枝、量化、知识蒸馏和紧凑神经网络设计; 着重介绍了近年来具有代表性的压缩模型方法及其特点; 最后, 总结了模型压缩的相关评价标准和研究前景.

关键词: 深度神经网络压缩, 网络剪枝, 量化, 知识蒸馏, 紧凑神经网络

Abstract: The deep neural network (DNN) model achieves strong performance using substantial memory consumption and high computational power, which can be difficult to deploy on hardware platforms with limited resources. To meet these challenges, researchers have made great strides in this field and have formed a wealth of relevant literature and methods. This paper introduces four representative compression methods for deep neural networks used in recent years: network pruning, quantization, knowledge distillation, and compact network design; in particular, the article focuses on the characteristics of these representative models. Finally, evaluation criteria and research prospects of model compression are summarized.

Key words: deep neural network compression, network pruning, quantification, knowledge distillation, compact neural network

中图分类号: