1 |
吴贺. 传统金融机构转型与变革的研究. 中国集体经济, 2021, 21, 96- 97.
|
2 |
WANG P, ZHANG P Y. Classification and management of electricity market customer considering demand response in China [C]//2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe). IEEE, 2017: 1-5. DOI: 10.1109/EEEIC.2017.7977664.
|
3 |
吴蕊, 张安勤, 田秀霞, 等. 基于改进K-means的电力数据异常检测算法 . 华东师范大学学报(自然科学版), 2020, (4): 79- 87.
|
4 |
陈聿, 田博今, 彭云竹, 等. 联合手肘法和期望最大化的高斯混合聚类电力系统客户分群算法. 计算机应用, 2020, 40, (11): 3217- 3223.
|
5 |
BARMAN M, DEV CHOUDHURY N B. A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India. Sustainable Cities and Society, 2020, 61, 102311.
doi: 10.1016/j.scs.2020.102311
|
6 |
LIU L Y, LIU D R, SUN Q, et al. Forecasting power output of photovoltaic system using a BP network method. Energy Procedia, 2017, 142, 780- 786.
doi: 10.1016/j.egypro.2017.12.126
|
7 |
WANG Z, WANG B, LIU C, et al. Improved BP neural network algorithm to wind power forecast. The Journal of Engineering, 2017, 13, 940- 943.
|
8 |
HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70 (1/2/3): 489- 501.
|
9 |
CHEN Z Y, GRYLLIAS K, LI W H. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine. Mechanical Systems and Signal Processing, 2019, 133, 106272.
doi: 10.1016/j.ymssp.2019.106272
|
10 |
SHARIATI M, TRUNG N T, WAKIL K, et al. Estimation of moment and rotation of steel rack connections using extreme learning machine. Steel and Composite Structures, 2019, 31 (5): 427- 435.
|
11 |
CHEN Y, PI D C. Novel fruit fly algorithm for global optimisation and its application to short-term wind forecasting. Connection Science, 2019, 31 (3): 244- 266.
doi: 10.1080/09540091.2019.1573419
|
12 |
JAHROMI A N, HASHEMI S, DEHGHANTANHA A, et al. An improved two-hidden-layer extreme learning machine for malware hunting. Computers & Security, 2020, 89, 101655.
|
13 |
LIU X Y, HUANG H Z, XIANG J W. A personalized diagnosis method to detect faults in gears using numerical simulation and extreme learning machine. Knowledge-Based Systems, 2020, 195, 105653.
doi: 10.1016/j.knosys.2020.105653
|
14 |
ZENG N Y, QIU H, WANG Z D, et al. A new switching-delayed-PSO-based optimized SVM algorithm for diagnosis of Alzheimer’s disease. Neurocomputing, 2018, 320, 195- 202.
doi: 10.1016/j.neucom.2018.09.001
|
15 |
XIA X. Study on the application of BP neural network in air quality prediction based on adaptive chaos fruit fly optimization algorithm [J]. MATEC Web of Conferences, 2021, 336: 07002.
|
16 |
UTHAYAKUMAR J, METAWA N, SHANKAR K, et al. Financial crisis prediction model using ant colony optimization. International Journal of Information Management, 2020, 50, 538- 556.
doi: 10.1016/j.ijinfomgt.2018.12.001
|
17 |
GAO W Y, SU C. Analysis of earnings forecast of blockchain financial products based on particle swarm optimization. Journal of Computational and Applied Mathematics, 2020, 372, 112724.
doi: 10.1016/j.cam.2020.112724
|
18 |
RUAN X M, ZHU Y Y, LI J, et al. Predicting the citation counts of individual papers via a BP neural network. Journal of Informetrics, 2020, 14 (3): 101039.
doi: 10.1016/j.joi.2020.101039
|
19 |
SALGOTRA R, SINGH U, SINGH S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems. Applied Mathematical Modelling, 2021, 89, 188- 207.
doi: 10.1016/j.apm.2020.08.014
|
20 |
LONG W, JIAO J J, LIANG X M, et al. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical optimization. Engineering Applications of Artificial Intelligence, 2018, 68, 63- 80.
doi: 10.1016/j.engappai.2017.10.024
|
21 |
MIRJALILI S. SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 2016, 96, 120- 133.
doi: 10.1016/j.knosys.2015.12.022
|
22 |
FARAMARZI A, HEIDARINEJAD M, STEPHENs B, et al. Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems, 2020, 191, 105190.
doi: 10.1016/j.knosys.2019.105190
|
23 |
CHEN Y, PI D C, XU Y. Neighborhood global learning based flower pollination algorithm and its application to unmanned aerial vehicle path planning. Expert Systems with Applications, 2021, 170, 114505.
doi: 10.1016/j.eswa.2020.114505
|