针对现有施工场所下工人安全帽佩戴检测模型推理耗时长、对硬件要求高, 且复杂多变环境下的训练数据集单一、数量少导致模型鲁棒性较差等问题, 提出了一种轻量化的安全帽佩戴检测模型YOLO-S. 首先, 针对数据集类别不平衡问题, 设计混合场景数据增强方法, 使类别均衡化, 提高模型在复杂施工环境下的鲁棒性; 将原始YOLOv5s主干网络更改为MobileNetV2, 降低了网络计算复杂度. 其次, 对模型进行压缩, 通过在BN层引入缩放因子进行稀疏化训练, 判定各通道重要性, 对冗余通道剪枝, 进一步减少模型推理计算量, 提高模型检测速度. 最后, 通过知识蒸馏辅助模型进行微调得到YOLO-S. 实验结果表明, YOLO-S的召回率及mAP较YOLOv5s分别提高1.9%、1.4%, 模型参数量压缩为YOLOv5s的1/3, 模型体积压缩为YOLOv5s的1/4, FLOPs为YOLOv5s的1/3, 推理速度快于其他模型, 可移植性较高.