1 |
SHEERY L J, JIN R C, MIRKIN C A, et al. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano letters, 2006, 6 (9): 2060- 2065.
doi: 10.1021/nl061286u
|
2 |
SUN L C, LI Z, HE J S, et al. Strong coupling with directional absorption features of Ag@Au hollow nanoshell/J-aggregate heterostructures. Nanophotonics, 2019, 8 (10): 1835- 1845.
doi: 10.1515/nanoph-2019-0216
|
3 |
LU Y, LIU G L, LEE L P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano letters, 2005, 5 (1): 5- 9.
doi: 10.1021/nl048965u
|
4 |
TAM F, GOODRICH G P, JOHNSON B R, et al. Plasmonic enhancement of molecular fluorescence. Nano letters, 2007, 7 (2): 496- 501.
doi: 10.1021/nl062901x
|
5 |
WEN F, ZHANG W Q, WEI G W, et al. Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) micospheres and their application in catalysis. Chemistry of Materials, 2008, 20 (6): 2144- 2150.
doi: 10.1021/cm703378c
|
6 |
GUNAWAN C, TEOH W Y, MARQUIS C P, et al. Reversible antimicrobial photoswitching in nanosilver. Small, 2010, 5 (3): 341- 344.
|
7 |
LEKEUFACK D D, BRIOUDE A, COLEMAN A W, et al. Core-shell gold J-aggregate nanoparticles for highly efficient strong coupling applications. Applied Physics Letters, 2010, 96 (25): 253107.
doi: 10.1063/1.3456523
|
8 |
TANG Y K, YU X T, PAN H F, et al. Numerical study of novel ratiometric sensors based on plasmon–exciton coupling. Applied Spectroscopy, 2017, 71 (10): 2377- 2384.
doi: 10.1177/0003702817706979
|
9 |
ZHOU N, YUAN M, GAO Y H, et al. Silver nanoshell plasmonically controlled emission of semiconductor quantum dots in the strong coupling regime. ACS Nano, 2016, 10 (4): 4154- 63.
doi: 10.1021/acsnano.5b07400
|
10 |
ZENGIN G, WERSÄLL M, NILSSON S, et al. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at smbient conditions. Physical Review Letters, 2015, 114 (15): 157401.
doi: 10.1103/PhysRevLett.114.157401
|
11 |
ZENGIN G, JOHANSSON G, JOHANSSON P, et al. Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. Scientific Reports, 2013, 3 (1): 83- 90.
|
12 |
AHERME D, LEDITH D M, GRAR M, et al. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Advanced Functional Materials, 2008, 18 (14): 2005- 2016.
doi: 10.1002/adfm.200800233
|
13 |
MA W D, YANG H F, LI Z P, et al. The tunable and well-controlled surface plasmon resonances of au hollow nanostructures by a chemical route. Plasmonics, 2018, 13 (1): 47- 53.
doi: 10.1007/s11468-016-0482-0
|
14 |
MOLL J, DAEHNE S, DURRANT J R, et al. Optical dynamics of excitons in J aggregates of a carbocyanine dye. The Journal of Chemical Physics, 1995, 102 (16): 6362- 70.
doi: 10.1063/1.1703017
|
15 |
MUNKHBAT B, WERSALL M, BARANOV D G, et al. Suppression of photo-oxidation of organic chromophores by strong coupling to plasmonic nanoantennas. Science Advances, 2018, 4 (7): 9552.
doi: 10.1126/sciadv.aas9552
|
16 |
SOROKIN A V, ROPAKOVA I Y, WOLTER S, et al. Exciton dynamics and self-trapping of carbocyanine J-aggregates in polymer films. The Journal of Physical Chemistry C, 2019, 123 (14): 9428- 9444.
doi: 10.1021/acs.jpcc.8b09338
|
17 |
SOROKIN A V, ROPAKOVA I Y, GRYNYOV R S, et al. Strong difference between optical properties and morphologies for J-aggregates of similar cyanine dyes. Dyes and Pigments, 2018, 152, 49- 53.
doi: 10.1016/j.dyepig.2018.01.032
|
18 |
PRIETO G, TÜVSÜZ H, DUYCKAERTS N, et al. Hollow nano- and microstructures as catalysts. Chemical Reviews, 2016, 14056.
|
19 |
CLAIRE C M, XIA N Y. Engineering the properties of metal nanostructures via galvanic replacement reactions. Materials Science & Engineering R, 2010, 70 (3): 44- 62.
|
20 |
李悦芳. 金属氧化物纳米粒子的分散及其环氧改性进展. 热固性树脂, 2015, 30 (5): 67- 70.
|
21 |
GUO Z R, FAN X, LIU L K, et al. Achieving high-purity colloidal gold nanoprisms and their application as biosensing platforms. J Colloid Interface, 2010, 348 (1): 29- 36.
doi: 10.1016/j.jcis.2010.04.013
|
22 |
毛远洋, 贾会敏, 何伟伟. AuCu双金属纳米颗粒的制备, 表征及性能探究. 贵金属, 2020, (1): 25- 30.
doi: 10.3969/j.issn.1004-0676.2020.01.004
|
23 |
姜波, 杨健, 李彦景, 等. 银纳米片的可控光诱导化学合成及其表征. 扬州大学学报(自然科学版), 2017, 20 (1): 28- 32.
|
24 |
SUN Y G, XIA Y N. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. Journal of the American Chemical Society, 2004, 126 (12): 3892- 3901.
doi: 10.1021/ja039734c
|