1 |
ANDERSSON B, SUNDBACK K, HELLMAN M, et al. Nitrogen fixation in shallow-water sediments: Spatial distribution and controlling factors. Limnology and Oceanography, 2014, 59 (6): 1932- 1944.
doi: 10.4319/lo.2014.59.6.1932
|
2 |
SHIAU Y J, LIN M F, TAN C C, et al. Assessing N2 fixation in estuarine mangrove soils . Estuarine Coastal and Shelf Science, 2017, 189, 84- 89.
doi: 10.1016/j.ecss.2017.03.005
|
3 |
COLE L W, MCGLATHERY K J. Nitrogen fixation in restored eelgrass meadows. Marine Ecology Progress Series, 2012, 448, 235- 246.
doi: 10.3354/meps09512
|
4 |
BRAUER V S, STOMP M, ROSSO C, et al. Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. Isme Journal, 2013, 7 (11): 2105- 2115.
doi: 10.1038/ismej.2013.103
|
5 |
GARCIAS-BONET N, VAQUER-SUNYER R, DUARTE C M, et al. Warming effect on nitrogen fixation in Mediterranean macrophyte sediments. Biogeosciences, 2019, 16 (1): 167- 175.
doi: 10.5194/bg-16-167-2019
|
6 |
JIANG H B, FUG F X, RIVERRO-CALLE S, et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nature Climate Change, 2018, 8 (8): 709- 712.
doi: 10.1038/s41558-018-0216-8
|
7 |
LEE R Y, TOYE S B. Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats. Marine Ecology Progress Series, 2006, 307, 127- 141.
doi: 10.3354/meps307127
|
8 |
BERTICS V J, LOSCHER C R, SALONEN I, et al. Occurrence of benthic microbial nitrogen fixation coupled to sulfate reduction in the seasonally hypoxic Eckernforde Bay, Baltic Sea. Biogeosciences, 2013, 10 (3): 1243- 1258.
doi: 10.5194/bg-10-1243-2013
|
9 |
GARCIAS-BONET N, FUSI M, ALI M, et al. High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. Biogeosciences, 2018, 15 (23): 7333- 7346.
doi: 10.5194/bg-15-7333-2018
|
10 |
HOU L J, ZHENG Y L, LIU M, et al. Anaerobic ammonium oxidation (anammox) bacterial diversity, abundance, and activity in marsh sediments of the Yangtze Estuary. Journal of Geophysical Research:Biogeosciences, 2013, 118 (3): 1237- 1246.
doi: 10.1002/jgrg.20108
|
11 |
胡晓婷, 程吕, 林贤彪, 等. 沉积物硝酸盐异化还原过程的温度敏感性与影响因素——以长江口青草沙水库为例. 中国环境科学, 2016, 36 (9): 2624- 2632.
doi: 10.3969/j.issn.1000-6923.2016.09.011
|
12 |
徐皓. 长江口营养盐的收支平衡及迁移模式 [D]. 上海: 华东师范大学, 2013.
|
13 |
李涛. 崇明潮滩厌氧氨氧化过程及影响机理初步探究 [D]. 上海: 华东师范大学, 2013.
|
14 |
CHEN Z Y, LI J F, SHEN H T, et al. Yangtze River of China: Historical analysis of discharge variability and sediment flux. Geomorphology, 2001, 41 (2/3): 77- 91.
|
15 |
HOU L J, LIU M, XU S Y, et al. The diffusive fluxes of inorganic nitrogen across the intertidal sediment-water interface of the Changjiang Estuary in China. Acta Oceanologica Sinica, 2006, 25 (3): 48- 57.
|
16 |
张红丽, 尹国宇, 郑艳玲, 等. 沉积物再悬浮对长江口潮滩上覆水体脱氮过程的影响. 华东师范大学学报(自然科学版), 2020, (3): 78- 87.
|
17 |
WANG R, LI X F, HOU L J, et al. Nitrogen fixation in surface sediments of the East China Sea: Occurrence and environmental implications. Mar Pollut Bull, 2018, 137, 542- 548.
doi: 10.1016/j.marpolbul.2018.10.063
|
18 |
HOU L J, YIN G Y, LIU M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments . Environmental Science & Technology, 2015, 49 (1): 326- 333.
|
19 |
HOU L J, ZHENG Y L, LIU M, et al. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands. Scientific Reports, 2015, (5): 15621.
|
20 |
LIU C, HOU L J, LIU M, et al. In situ nitrogen removal processes in intertidal wetlands of the Yangtze Estuary. Journal of Environmental Sciences, 2020, 93, 91- 97.
doi: 10.1016/j.jes.2020.03.005
|
21 |
HOU L J, WANG R, YIN G Y, et al. Nitrogen fixation in the intertidal sediments of the Yangtze Estuary: Occurrence and environmental implications. Journal of Geophysical Research: Biogeosciences, 2018, 123 (3): 936- 944.
doi: 10.1002/2018JG004418
|
22 |
MARCARELLI A M, WURTSBAUGH W A. Temperature and nutrient supply interact to control nitrogen fixation in oligotrophic streams: An experimental examination. Limnology and Oceanography, 2006, 51 (5): 2278- 2289.
doi: 10.4319/lo.2006.51.5.2278
|
23 |
FULWEILER R W, BROWN S M, NIXON S W, et al. Evidence and a conceptual model for the co-occurrence of nitrogen fixation and denitrification in heterotrophic marine sediments. Marine Ecology Progress Series, 2013, 482, 57- 68.
doi: 10.3354/meps10240
|
24 |
GIER J, SOMMER S, LOSCHER C R, et al. Nitrogen fixation in sediments along a depth transect through the Peruvian oxygen minimum zone. Biogeosciences, 2016, 13(14), 4065- 4080.
|
25 |
SAWICKA J E, JORGENSEN B B, BRUCHERT V. Temperature characteristics of bacterial sulfate reduction in continental shelf and slope sediments. Biogeosciences, 2012, 9 (8): 3425- 3435.
doi: 10.5194/bg-9-3425-2012
|
26 |
ZHOU X B, SMITH H, SILVA A G, et al. Differential responses of dinitrogen fixation, Diazotrophic Cyanobacteria and ammonia oxidation reveal a potential warming-induced imbalance of the N-Cycle in biological soil crusts. Plos One, 2016, 11 (10): 129- 131.
|
27 |
RIGGSBEE J A, ORR C H, LEECH D M, et al. Suspended sediments in river ecosystems: Photochemical sources of dissolved organic carbon, dissolved organic nitrogen, and adsorptive removal of dissolved iron. Journal of Geophysical Research-Biogeosciences, 2008, 113 (G3): 121.
|
28 |
KNAPP A N. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen . Frontiers in Microbiology, 2012, (3): 12.
|
29 |
李祥, 黄勇, 巫川, 等. Fe2 +和Fe3 +对厌氧氨氧化污泥活性的影响 . 环境科学, 2014, 35 (11): 4224- 4229.
|
30 |
邹小鲁, 蔡克强, 黄维南. 南岭黄檀根瘤固氮酶和吸氢酶活性研究. 亚热带植物通讯, 1995, (2): 22- 25.
|
31 |
BURRIS R H. Comparative study of the response of Azotobacter vinelandii and Acetobacter diazotrophicus to changes in pH. Protoplasma, 1994, 183 (1): 62- 66.
|
32 |
贺天立. pH和温度对束毛藻和鳄球藻的生长、固氮及同位素分馏影响 [D]. 福建 厦门: 厦门大学, 2019.
|
33 |
林巧云. 寡营养南海无光区和富营养九龙江河口固氮作用初探 [D]. 福建 厦门: 厦门大学, 2019.
|
34 |
陈磊, 邵志伟, 高兴, 等. 大豆固氮相关的硫酸盐转运基因进化分析. 大豆科学, 2018, 37 (5): 697- 703.
|
35 |
KNOBLAUCH C, JORGENSEN B B. Effect of temperature on sulphate reduction, growth rate and growth yield in five psychrophilic sulphate-reducing bacteria from Arctic sediments. Environmental Microbiology, 1999, 1 (5): 457- 467.
doi: 10.1046/j.1462-2920.1999.00061.x
|
36 |
TANG C, ROBSON A D, DILWORTH M J. The role of iron in nodulation and nitrogen fixation in Lupinus angustifolius L. New Phytologist, 1990, 114 (2): 173- 182.
doi: 10.1111/j.1469-8137.1990.tb00388.x
|
37 |
HOLGUIN G, VAZQUEZ P, BASHAN Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biology and Fertility of Soils, 2001, 33 (4): 265- 278.
doi: 10.1007/s003740000319
|
38 |
ZHENG Z Z, WAN X H, XU M N, et al. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China. Journal of Geophysical Research-Biogeosciences, 2017, 122 (9): 2325- 2337.
doi: 10.1002/2017JG003871
|
39 |
陈琴, 戴俊, 廖兴文, 等. 杉木与固氮树种混交对土壤有机质及氮含量的影响. 广西林业科学, 2016, 45 (2): 149- 153.
doi: 10.3969/j.issn.1006-1126.2016.02.006
|
40 |
TICHI M A, TABITA F R. Maintenance and control of redox poise in Rhodobacter capsulatus strains deficient in the Calvin-Benson-Bassham pathway. Archives of Microbiology, 2000, 174 (5): 322- 333.
doi: 10.1007/s002030000209
|
41 |
BRANDES J A, DEVOL A H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Global Biogeochemical Cycles, 2002, 16 (4): 131.
|
42 |
朱坤, 吴莹, 齐丽君. 上海城市内河中有机碳含量的时空变化及影响因素分析. 华东师范大学学报(自然科学版), 2020, (1): 150- 158.
|
43 |
WADE J, WATERGOUSE H, ROCHE L. M, et al. Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils. Geoderma, 2018, 315, 120- 129.
doi: 10.1016/j.geoderma.2017.11.039
|